In operando visualization of electrolyte stratification dynamics in lead-acid battery using phase-contrast X-ray imaging

2020 ◽  
Vol 56 (66) ◽  
pp. 9553-9556
Author(s):  
Daiko Takamatsu ◽  
Tatsumi Hirano ◽  
Akio Yoneyama ◽  
Takayuki Kimura ◽  
Motoko Harada ◽  
...  

Real-time visualization of electrolyte stratification dynamics under lead-acid battery operation with high temporal and spatial resolution by phase-contrast X-ray imaging.

2021 ◽  
Vol 20 ◽  
pp. 153303382110101
Author(s):  
Thet-Thet Lwin ◽  
Akio Yoneyama ◽  
Hiroko Maruyama ◽  
Tohoru Takeda

Phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer provides high sensitivity and high spatial resolution, and it has the ability to depict the fine morphological structures of biological soft tissues, including tumors. In this study, we quantitatively compared phase-contrast synchrotron-based X-ray computed tomography images and images of histopathological hematoxylin-eosin-stained sections of spontaneously occurring rat testicular tumors that contained different types of cells. The absolute densities measured on the phase-contrast synchrotron-based X-ray computed tomography images correlated well with the densities of the nuclear chromatin in the histological images, thereby demonstrating the ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer to reliably identify the characteristics of cancer cells within solid soft tissue tumors. In addition, 3-dimensional synchrotron-based phase-contrast X-ray computed tomography enables screening for different structures within tumors, such as solid, cystic, and fibrous tissues, and blood clots, from any direction and with a spatial resolution down to 26 μm. Thus, phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer shows potential for being useful in preclinical cancer research by providing the ability to depict the characteristics of tumor cells and by offering 3-dimensional information capabilities.


2015 ◽  
Vol 22 (5) ◽  
pp. 1279-1288 ◽  
Author(s):  
Isobel A. Aloisio ◽  
David M. Paganin ◽  
Christopher A. Wright ◽  
Kaye S. Morgan

Phase-contrast X-ray imaging using a paper analyzer enables the visualization of X-ray transparent biological structures using the refractive properties of the sample. The technique measures the sample-induced distortions of a spatially random reference pattern to retrieve quantitative sample information. This phase-contrast method is promising for biomedical application due to both a simple experimental set-up and a capability for real-time imaging. The authors explore the experimental configuration required to achieve robustness and accuracy in terms of (i) the paper analyzer feature size, (ii) the sample-to-detector distance, and (iii) the exposure time. Results using a synchrotron source confirm that the technique achieves accurate phase retrieval with a range of paper analyzers and at exposures as short as 0.5 ms. These exposure times are sufficiently short relative to characteristic physiological timescales to enable real-time dynamic imaging of living samples. A theoretical guide to the choice of sample-to-detector distance is also derived. While the measurements are specific to the set-up, these guidelines, the example speckle images, the strategies for analysis in the presence of noise and the experimental considerations and discussion will be of value to those who wish to use the speckle-tracking paper analyzer technique.


2014 ◽  
Vol 5 (11) ◽  
pp. 4024 ◽  
Author(s):  
Andrew F.T. Leong ◽  
Genevieve A. Buckley ◽  
David M. Paganin ◽  
Stuart B. Hooper ◽  
Megan J. Wallace ◽  
...  

BMC Biology ◽  
2007 ◽  
Vol 5 (1) ◽  
Author(s):  
John J Socha ◽  
Mark W Westneat ◽  
Jon F Harrison ◽  
James S Waters ◽  
Wah-Keat Lee

Author(s):  
Andreas Kaesler ◽  
Freya Lilli Rudawski ◽  
Mark Oliver Zander ◽  
Felix Hesselmann ◽  
Isaac Pinar ◽  
...  

Abstract Purpose Extracorporeal membrane oxygenation has gained increasing attention in the treatment of patients with acute and chronic cardiopulmonary and respiratory failure. However, clotting within the oxygenators or other components of the extracorporeal circuit remains a major complication that necessitates at least a device exchange and bears risks of adverse events for the patients. In order to better predict thrombus growth within oxygenators, we present an approach for in-vitro visualization of thrombus growth using real-time X-ray imaging. Methods An in-vitro test setup was developed using low-dose anticoagulated ovine blood and allowing for thrombus growth within 4 h. The setup was installed in a custom-made X-ray setup that uses phase-contrast for imaging, thus providing enhanced soft-tissue contrast, which improves the differentiation between blood and potential thrombus growth. During experimentation, blood samples were drawn for the analysis of blood count, activated partial thromboplastin time and activated clotting time. Additionally, pressure and flow data was monitored and a full 360° X-ray scan was performed every 15 min. Results Thrombus formation indicated by a pressure drop and changing blood parameters was monitored in all three test devices. Red and white thrombi (higher/lower attenuation, respectively) were successfully segmented in one set of X-ray images. Conclusion We showed the feasibility of a new in-vitro method for real-time thrombus growth visualization by means of phase contrast X-ray imaging. In addition, with more blood parameters that are clinically relevant, this approach might contribute to improved oxygenator exchange protocols in the clinical routine.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Sign in / Sign up

Export Citation Format

Share Document