Polar soft-SAFT: theory and comparison with molecular simulations and experimental data of pure polar fluids

2020 ◽  
Vol 22 (23) ◽  
pp. 13171-13191 ◽  
Author(s):  
Ismail I. I. Alkhatib ◽  
Luís M. C. Pereira ◽  
Jordi Torne ◽  
Lourdes F. Vega

The consideration of polar interactions is of vital importance for the development of predictive and accurate thermodynamic models for polar fluids, as they govern most of their thermodynamic properties, making them highly non-ideal fluids.

Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


2021 ◽  
Author(s):  
Oluwakemi Victoria Eniolorunda ◽  
Antonin Chapoy ◽  
Rod Burgass

Abstract In this study, new experimental data using a reliable approach are reported for solid-fluid phase equilibrium of ternary mixtures of Methane-Carbon-dioxide- n-Hexadecane for 30-73 mol% CO2 and pressures up to 24 MPa. The effect of varying CO2 composition on the overall phase transition of the systems were investigated. Three thermodynamic models were used to predict the liquid phase fugacity, this includes the Peng Robison equation of state (PR-EoS), Soave Redlich-Kwong equation of state (SRK-EoS) and the Cubic plus Association (CPA) equation of state with the classical mixing rule and a group contribution approach for calculating binary interaction parameters in all cases. To describe the wax (solid) phase, three activity coefficient models based on the solid solution theory were investigated: the predictive universal quasichemical activity coefficients (UNIQUAC), Universal quasi-chemical Functional Group activity coefficients (UNIFAC) and the predictive Wilson approach. The solid-fluid equilibria experimental data gathered in this experimental work including those from saturated and under-saturated conditions were used to check the reliability of the various phase equilibria thermodynamic models.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


1984 ◽  
Vol 62 (8) ◽  
pp. 796-802 ◽  
Author(s):  
Maryse Mondat ◽  
A. Georgallas ◽  
D. A. Pink ◽  
M. J. Zuckermann

A theoretical model is presented with the intention of describing lateral phase separations in binary lipid mixtures in which the acyl chains of the components differ in their length. The model includes explicitly interactions between the acyl chains and between polar heads of the lipid molecules. Phase diagrams and thermodynamic properties of binary lipid mixtures were calculated using a wide range of interaction parameters. It is shown that the occurrence of immiscibility in the gel phase is related to the interactions between the polar heads of the lipid molecules. The calculated results for binary lipid mixtures are compared with the available experimental data. In particular, the calculated specific heat for dilauroyl phosphatidylcholine – distearoyl phosphatidylcholine is in reasonable agreement with experimental results obtained from differential scanning calorimetry measurements.


Author(s):  
Amel Zammouri ◽  
M. Ben Zid ◽  
N. Kechaou ◽  
N. Boudhrioua Mihoubi

This investigation examines and compares the water sorption isotherms and the thermodynamic properties of two pharmaceutical preparations (Hypril and Azix) intended to be manufactured with the same process plant and equipment. The moisture equilibrium isotherms were determined at 50, 60 and 70 °C using a gravimetric technique. Five isotherm models were explored for their fitting to the experimental data. Azix showed sigmoid type II isotherms while Hypril showed type III isotherms according to the BET classification. All investigated models fitted well the water sorption isotherms of Hypril. By contrast, only GAB and Adam and Shove equations gave appropriate fit to the experimental data of Azix. For both formulations, the isosteric heat and the differential entropy decreased sharply with the increase of equilibrium moisture content to minimum values and thereafter remain constant. In the case of Azix, the integral enthalpy decreased with equilibrium moisture content while the integral entropy increased until reaching a constant value. Contrariwise, Hypril showed decreasing of the integral enthalpy and entropy with the equilibrium moisture content. Keywords: sorption isotherm, enthalpy, entropy, spreading pressure, pharmaceutical formulations  


1998 ◽  
Vol 16 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Ching-Yuan Chang ◽  
Chih-Yin Ho

Of the major replacements for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) are now accepted as being prime contributors to stratospheric ozone depletion. As a consequence, the development of adsorbents capable of adsorbing and recovering specific HCFCs has received great attention. This paper describes an investigation of the adsorption equilibrium of 1, 1-dichloro-1-fluoroethane (HCFC-141b) vapour on a commercial hydrophobic zeolite. The corresponding Henry, Freundlich and Dubinin–Radushkevich (D–R) equilibrium isotherms have been determined and found to correlate well with the experimental data. Based on the Henry adsorption isotherms obtained at 283, 303 and 313 K. thermodynamic properties such as the enthalpy, free energy and entropy of adsorption have been computed for the adsorption of HCFC-141b vapour on the adsorbent. The results obtained could be useful in the application of HCFC adsorption on the hydrophobic zeolite studied.


Sign in / Sign up

Export Citation Format

Share Document