A systematic model study quantifying how conical intersection topography modulates photochemical reactions

2020 ◽  
Vol 22 (36) ◽  
pp. 20265-20283
Author(s):  
Camille A. Farfan ◽  
Daniel B. Turner

Conical intersection topography plays an essential role in excited-state photochemistry. Here, topography is modified systematically to quantify its effects on photochemical reaction rates, reactant recovery, and photoproduct yield.

2021 ◽  
Author(s):  
Cristian Guerra ◽  
Leandro Ayarde-Henriquez ◽  
Mario Duque-Noreña ◽  
Carlos Cardenas ◽  
Patricia Pérez ◽  
...  

<div><p>In this work, the 2s+2s (face-to-face) prototypical example of a photochemical reaction has been re-examined to characterize the evolution of chemical bonding. The analysis of the electron localization function (as an indirect measure of the Pauli principle) along the minimum energy path provides strong evidence in support that CC bond formation occurs not in the excited state but at the ground electronic state after crossing the rhombohedral S<sub>1</sub>/S<sub>0</sub> conical intersection. </p></div><br>


2021 ◽  
Author(s):  
Cristian Guerra ◽  
Leandro Ayarde-Henriquez ◽  
Mario Duque-Noreña ◽  
Carlos Cardenas ◽  
Patricia Pérez ◽  
...  

<div><p>In this work, the 2s+2s (face-to-face) prototypical example of a photochemical reaction has been re-examined to characterize the evolution of chemical bonding. The analysis of the electron localization function (as an indirect measure of the Pauli principle) along the minimum energy path provides strong evidence in support that CC bond formation occurs not in the excited state but at the ground electronic state after crossing the rhombohedral S<sub>1</sub>/S<sub>0</sub> conical intersection. </p></div><br>


2015 ◽  
Vol 17 (7) ◽  
pp. 5039-5042 ◽  
Author(s):  
Ming-Der Su

The photomigration reaction mechanism for a five-membered-ring silene 1 was theoretically studied using the CAS/6-311G(d) and MP2-CAS/6-311++G(3df,3pd) methods. The model computations conclude that the conical intersection mechanism plays an important role in such a photochemical reaction. That is, the conical intersection mechanism is a one-step process that has no barrier.


2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


2018 ◽  
Author(s):  
Juan Sanz García ◽  
Martial Boggio-Pasqua ◽  
Ilaria Ciofini ◽  
Marco Campetella

<div>The ability to locate minima on electronic excited states (ESs) potential energy surfaces (PESs) both in the case of bright and dark states is crucial for a full understanding of photochemical reactions. This task has become a standard practice for small- to medium-sized organic chromophores thanks to the constant developments in the field of computational photochemistry. However, this remains a very challenging effort when it comes to the optimization of ESs of transition metal complexes (TMCs), not only due to the presence of several electronic excited states close in energy, but also due to the complex nature of the excited states involved. In this article, we present a simple yet powerful method to follow an excited state of interest during a structural optimization in the case of TMC, based on the use of a compact hole-particle representation of the electronic transition, namely the natural transition orbitals (NTOs). State tracking using NTOs is unambiguously accomplished by computing the mono-electronic wavefunction overlap between consecutive steps of the optimization. Here, we demonstrate that this simple but robust procedure works not only in the case of the cytosine but also in the case of the ES optimization of a ruthenium-nitrosyl complex which is very problematic with standard approaches.</div>


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 679
Author(s):  
Pouya Partovi-Azar ◽  
Daniel Sebastiani

Recently, a new method [P. Partovi-Azar and D. Sebastiani, J. Chem. Phys. 152, 064101 (2020)] was proposed to increase the efficiency of proton transfer energy calculations in density functional theory by using the T1 state with additional optimized effective potentials instead of calculations at S1. In this work, we focus on proton transfer from six prototypical photoacids to neighboring water molecules and show that the reference proton dissociation curves obtained at S1 states using time-dependent density functional theory can be reproduced with a reasonable accuracy by performing T1 calculations at density functional theory level with only one additional effective potential for the acidic hydrogens. We also find that the extra effective potentials for the acidic hydrogens neither change the nature of the T1 state nor the structural properties of solvent molecules upon transfer from the acids. The presented method is not only beneficial for theoretical studies on excited state proton transfer, but we believe that it would also be useful for studying other excited state photochemical reactions.


1967 ◽  
Vol 20 (2) ◽  
pp. 321 ◽  
Author(s):  
NC Jamieson ◽  
GE Lewis

The photochemical reactions of 4,4?-bis(phenylazo)biphenyl and 4- phenyl-azoazobenzene in 98% sulphuric acid have been examined, for comparison with the corresponding reactions in 22N acid. Photochemical cyclodehydrogenation of 4-phenylazoazobenzene to two benzo[c]cinnoline derivatives has thereby been effected for the first time. The observed course of the latter reaction has led, in turn, to studies of the benzidine rearrangement of 2-(2-phenylhydrazino)benzo[c]- cinnoline, of the photochemical cyclodehydrogenation of 3-phenylazobenzene, and of the photochemical reaction of 2-phenylazobenzo[c]cinnoline. The results of these investigations are now recorded and discussed.


2021 ◽  
Vol 18 ◽  
Author(s):  
Aparna Das

: In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally friendly, and sustainable technology. Compared to other light sources in photochemical reaction, LEDs have advantages in terms of efficiency, power, compatibility, and environmentally-friendly nature. This review highlights the most recent advances in LED-induced photochemical reactions. The effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization, and sensitization is discussed in detail. No other reviews have been published on the importance of white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this review is highly significant and timely.


Sign in / Sign up

Export Citation Format

Share Document