Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications

2021 ◽  
Author(s):  
Kai Zheng ◽  
Baiyan Sui ◽  
Kanwal Ilyas ◽  
Aldo R. Boccaccini

Porous bioactive glass micro- and nanospheres are attractive biomaterials for biomedical applications: bone regeneration, wound healing, drug delivery and theranostics.

The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


RSC Advances ◽  
2020 ◽  
Vol 10 (36) ◽  
pp. 21413-21419 ◽  
Author(s):  
Muhammad Saif Ur Rahman ◽  
Muhammad Asif Tahir ◽  
Saima Noreen ◽  
Muhammad Yasir ◽  
Ijaz Ahmad ◽  
...  

A combination of chemotherapy with hyperthermia can produce remarkable success in treating advanced cancers.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Botao Song ◽  
Liang Wu ◽  
Chengtie Wu ◽  
Jiang Chang

AbstractIn this communication, hollow bioactive glass (BG) nanofibers were fabricated via a single-nozzle electrospinning method. The morphology of the prepared hollow BG nanofibers was observed by SEM and TEM, and the results showed that BG nanofibers had a continuous hollow interior. The hollow BG nanofibers were incubated in simulated body fluid (SBF) to investigate their apatitemineralization ability, and the result showed that after incubation for 6 h a flower-like apatite was observed on the surface of hollowBGnanofibers, and the Fourier transform infrared (FTIR) result further confirmed the formation of apatite. The results suggested that hollow BG nanofibers could be used for drug delivery and bone regeneration applications due to their unique hollow structure and bioactivity.


2020 ◽  
Vol 7 (10) ◽  
pp. 4032-4040
Author(s):  
Esam Bashir Yahya ◽  
Marwa Mohammed Alzalouk ◽  
Khalifa A. Alfallous ◽  
Abdullah F. Abogmaza

Aerogels have been steadily developed since its first invention to become one of the most promising materials for various medical and non-medical applications. It has been prepared from organic and inorganic materials, in pure forms or composites. Cellulose-based aerogels are considered one of the promising materials in biomedical applications due to their availability, degradability, biocompatibility and non-cytotoxicity compared to conventional silica or metal-based aerogels. The unique properties of such materials permit their utilization in drug delivery, biosensing, tissue engineering scaffolds, and wound dressing. This review presents a summary of aerogel development as well as the properties and applications of aerogels. Herein, we further discuss the recent works pertaining to utilization of cellulose-based aerogels for antibacterial delivery.


Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1704-1715 ◽  
Author(s):  
Jieling Li ◽  
Ruirui Xing ◽  
Shuo Bai ◽  
Xuehai Yan

The review introduces several methods for fabrication of robust peptide-based hydrogels and their biological applications in the fields of drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexandru Anisiei ◽  
Florin Oancea ◽  
Luminita Marin

Abstract Chitosan is a biopolymer originating from renewable resources, with great properties which make it an attractive candidate for plenty of applications of contemporary interest. By manufacturing chitosan into nanofibers using the electrospinning method, its potential is amplified due to the enhancement of the active surface and the low preparation cost. Many attempts were made with the aim of preparing chitosan-based nanofibers with controlled morphology targeting their use for tissue engineering, wound healing, food packaging, drug delivery, air and water purification filters. This was a challenging task, which resulted in a high amount of data, sometimes with apparent contradictory results. In this light, the goal of the paper is to present the main routes reported in the literature for chitosan electrospinning, stressing the advantages and disadvantages of each of them. Special emphasis is placed on the influence of various electrospinning parameters on the morphological characteristics of the fibers and their suitability for distinct applications.


Author(s):  
Emma Barrett-Catton ◽  
Murial L. Ross ◽  
Prashanth Asuri

Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications, including tissue engineering, drug delivery, wound healing, bioprinting and biowearable devices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Saurav Das ◽  
Debapratim Das

Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.


2021 ◽  
Vol 17 ◽  
pp. 2553-2569
Author(s):  
Luke O Jones ◽  
Leah Williams ◽  
Tasmin Boam ◽  
Martin Kalmet ◽  
Chidubem Oguike ◽  
...  

Cryogels are macroporous polymeric structures formed from the cryogelation of monomers/polymers in a solvent below freezing temperature. Due to their inherent interconnected macroporosity, ease of preparation, and biocompatibility, they are increasingly being investigated for use in biomedical applications such as 3D-bioprinting, drug delivery, wound healing, and as injectable therapeutics. This review highlights the fundamentals of macroporous cryogel preparation, cryogel properties that can be useful in the highlighted biomedical applications, followed by a comprehensive review of recent studies in these areas. Research evaluated includes the use of cryogels to combat various types of cancer, for implantation without surgical incision, and use as highly effective wound dressings. Furthermore, conclusions and outlooks are discussed for the use of these promising and durable macroporous cryogels.


Sign in / Sign up

Export Citation Format

Share Document