Understanding the lipid production mechanism in Euglena gracilis with a fast-response AIEgen bioprobe, DPAS

2021 ◽  
Vol 5 (1) ◽  
pp. 268-283
Author(s):  
AHM Mohsinul Reza ◽  
Yabin Zhou ◽  
Javad Tavakoli ◽  
Youhong Tang ◽  
Jianguang Qin

The aggregation-induced emission (AIE) bioprobe, DPAS can rapidly and easily detect lipid drops in Euglena gracilis as highly valued metabolites under nitrogen and calcium deprivation and glucose supplementation in darkness.

2016 ◽  
Vol 49 (1) ◽  
pp. 30-37
Author(s):  
U-Cheol Jeong ◽  
Jong-Kuk Choi ◽  
Chang-Min Kang ◽  
Byeong-Dae Choi ◽  
Seok-Joong Kang

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6624 ◽  
Author(s):  
Marika Tossavainen ◽  
Usman Ilyass ◽  
Velimatti Ollilainen ◽  
Kalle Valkonen ◽  
Anne Ojala ◽  
...  

Nitrogen limitation is considered a good strategy for enhancement of algal lipid production while conversely N repletion has been shown to result in biomass rich in proteins. In this study, the influence of long-term N limitation on Euglena gracilis fatty acid (FA), protein, chlorophyll a, and carotenoid concentrations was studied in N limited cultures. Biomass composition was analyzed from three-time points from N starved late stationary phase cultures, exposed to three different initial N concentrations in the growth medium. Total lipid content increased under N limitation in ageing cultures, but the low N content and prolonged cultivation time resulted in the formation of a high proportion of saturated FAs. Furthermore, growth as well as the production of proteins, chlorophyll a and carotenoids were enhanced in higher N concentrations and metabolism of these cellular components stayed stable during the stationary growth phase. Our findings showed that a higher N availability and a shorter cultivation time is a good strategy for efficient E. gracilis biomass production, regardless of whether the produced biomass is intended for maximal recovery of polyunsaturated FAs, proteins, or photosynthetic pigments. Additionally, we showed an increase of neoxanthin, β-carotene, and diadinoxanthin as a response to higher N availability.


2021 ◽  
Vol 100 (8) ◽  
pp. 127-134
Author(s):  
Xiaomiao TAN ◽  
Jiangyu ZHU ◽  
Minato WAKISAKA

Author(s):  
Hilton H. Mollenhauer ◽  
W. Evans

The pellicular structure of Euglena gracilis consists of a series of relatively rigid strips (Fig. 1) composed of ridges and grooves which are helically oriented along the cell and which fuse together into a common junction at either end of the cell. The strips are predominantly protein and consist in part of a series of fibers about 50 Å in diameter spaced about 85 Å apart and with a secondary periodicity of about 450 Å. Microtubules are also present below each strip (Fig. 1) and are often considered as part of the pellicular complex. In addition, there may be another fibrous component near the base of the pellicle which has not yet been very well defined.The pellicular complex lies underneath the plasma membrane and entirely within the cell (Fig. 1). Each strip of the complex forms an overlapping junction with the adjacent strip along one side of each groove (Fig. 1), in such a way that a certain amount of sideways movement is possible between one strip and the next.


Author(s):  
Tetsuaki Osafune ◽  
Shuji Sumida ◽  
Tomoko Ehara ◽  
Eiji Hase ◽  
Jerome A. Schiff

Changes in the morphology of pyrenoid and the distribution of RuBisCO in the chloroplast of Euglena gracilis were followed by immunoelectron microscopy during the cell cycle in a light (14 h)- dark (10 h) synchronized culture under photoautotrophic conditions. The imrnunoreactive proteins wereconcentrated in the pyrenoid, and less densely distributed in the stroma during the light period (growth phase, Fig. 1-2), but the pyrenoid disappeared during the dark period (division phase), and RuBisCO was dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of the stroma, and RuBisCO is again concentrated in that pyrenoid region. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of RuBisCO extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.


Author(s):  
Tomoko Ehara ◽  
Shuji Sumida ◽  
Tetsuaki Osafune ◽  
Eiji Hase

As shown previously, Euglena cells grown in Hutner’s medium in the dark without agitation accumulate wax as well as paramylum, and contain proplastids showing no internal structure except for a single prothylakoid existing close to the envelope. When the cells are transferred to an inorganic medium containing ammonium salt and the cell suspension is aerated in the dark, the wax was oxidatively metabolized, providing carbon materials and energy 23 for some dark processes of plastid development. Under these conditions, pyrenoid-like structures (called “pro-pyrenoids”) are formed at the sites adjacent to the prolamel larbodies (PLB) localized in the peripheral region of the proplastid. The single prothylakoid becomes paired with a newly formed prothylakoid, and a part of the paired prothylakoids is extended, with foldings, in to the “propyrenoid”. In this study, we observed a concentration of RuBisCO in the “propyrenoid” of Euglena gracilis strain Z using immunoelectron microscopy.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


Sign in / Sign up

Export Citation Format

Share Document