A Review on Synthetic Approaches to Hollow Nanostructures

Author(s):  
Maiyong Zhu ◽  
Yikun Cheng ◽  
Qiao Luo ◽  
Mohammad Yaseen El-khateeb ◽  
Quan Zhang

During the past decades, hollow nanostructures have been developed as a vital class of functional materials in various areas owing to their advantageous characteristics over solid materials. To date, many...

Author(s):  
Sofia F. Soares ◽  
Tiago Fernandes ◽  
Ana L. Daniel-da-Silva ◽  
Tito Trindade

Functionality in nanoengineered materials has been usually explored on structural and chemical compositional aspects of matter that exist in such solid materials. It is well known that the absence of solid matter is also relevant and the existence of voids confined in the nanostructure of certain particles is no exception. Indeed, over the past decades, there has been great interest in exploring hollow nanostructured materials that besides the properties recognized in the dense particles also provide empty spaces, in the sense of condensed matter absence, as an additional functionality to be explored. As such, the chemical synthesis of hollow nanostructures has been driven not only for tailoring the size and shape of particles with well-defined chemical composition, but also to achieve control on the type of hollowness that characterize such materials. This review describes the state of the art on late developments concerning the chemical synthesis of hollow nanostructures, providing a number of examples of materials obtained by distinct strategies. It will be apparent by reading this progress report that the absence of solid matter determines the functionality of hollow nanomaterials for several technological applications.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


2018 ◽  
Vol 16 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Santosh L. Gaonkar ◽  
Vignesh U. Nagaraj ◽  
Swarnagowri Nayak

In the past three decades, the heterocyclic oxazine cores have been intensely concerned. Oxazine derivatives are promising vital heterocyclic motifs. They are eminent for their synthetic potential and extensive biological properties. Oxazines are versatile intermediates for the synthesis of a variety of heterocycles and bifunctional compounds. Researchers have reported several synthetic approaches for the preparation of oxazines. This review emphasises the recent approaches for the synthesis of oxazine derivatives.


Author(s):  
Adam Brill ◽  
Elad Koren ◽  
Graham de Ruiter

Atomically thin two-dimensional materials (2DMs) have moved in the past 15 years from a serendipitously isolated single-layered graphene curiosity to a near technological renaissance, where 2DMs such as graphene and...


2018 ◽  
Vol 3 (12) ◽  
Author(s):  
Linlin Xu ◽  
Jun Yang

Abstract Mastery over the size/shape of nanocrystals (NCs) enables control of their properties and enhancement of their usefulness for a given application. Within the past decades, the development of wet-chemistry methods leads to the blossom of research in noble metal nanomaterials with tunable sizes and shapes. We herein would prefer to devote this chapter to introduce the solution-based methods for size and shape-controlled synthesis of ruthenium (Ru) NCs, which can be summarized into five categories: (i) Synthesis of spherical Ru NCs; (ii) synthesis of one-dimensional (1D) Ru NCs, e.g. wires and rods; (iii) synthesis of two-dimensional (2D) Ru NCs, e.g. nanoplates; (iv) synthesis of Ru NCs with hollow interiors and (v) synthesis of Ru NCs with other morphologies, e.g. chains, dendrites and branches. We aim at highlighting the synthetic approaches and growth mechanisms of these types of Ru NCs. We also introduce the detailed characterization tools for analysis of Ru NCs with different sizes/shapes. With respect to the creation of great opportunities and tremendous challenges due to the accumulation in noble metal nanomaterials, we briefly make some perspectives for the future development of Ru NCs so as to provide the readers a systematic and coherent picture of this promising field. We hope this reviewing effort can provide for technical bases for effectively designing and producing Ru NCs with enhanced physical/chemical properties. Graphical Abstract: The solution-based methods for size and shape-controlled synthesis of ruthenium nanocrystals as well as the mechanisms behind them are extensively reviewed.


Author(s):  
Chenfei Yao ◽  
Ge Shi ◽  
Yijie Hu ◽  
Hao Zhuo ◽  
Zehong Chen ◽  
...  

The development of emulsion templated functional materials has achieved great progress in the past decades in academic and industrial fields. Recently, new building blocks such as graphene, transition metal carbides...


2021 ◽  
Vol 08 ◽  
Author(s):  
Adarsh Sahu

Background: 1,2,3-triazole is considered widely explored scaffolds by medicinal chemists because of their therapeutic importance. The structural characteristics of 1,2,3-triazoles allow this to mimic certain functional groups demonstrating its utility to prepare new medicinal compounds using the concept of bioisosterism and molecular hybridization. Centered on Huisgens cycloaddition reaction, over the past decade and a half, click chemistry approaches were developed to furnish triazole derivatives with various applications ranging from drugs to bioconjugation linkers. Objective: In the present review, we aim to highlight the different approaches developed for the synthesis of 1,2,3-triazole derivatives and in particular advances in synthetic methods for the last 16 years. This review is also intended to help researchers for finding potential future directions and scope in the development of synthetic strategies. Conclucion: As summarized through the compilation of recent advances for 1,2,3-triazole synthesis, it is clear that these protocols have numerous advantages such as cleaner reaction profile, shorter reaction times, excellent product yields, environmentally benign milder reactions, and safe operations.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Joseph C. Sloop

Heterocyclic molecules incorporating fluorinated isoquinoline components are found in many medicinally and agriculturally important bioactive products as well as industrially impactful materials. Within the past decade, a variety of isoquinolinic ring assembly techniques has enabled the introduction of diverse fluorine-containing functionalities which can enhance potential bioactivity and industrial utility. This review examines recent noncatalyzed and transition metal catalyzed synthetic approaches to the assembly of isoquinoline derivatives that are ring-fluorinated and/or result in the incorporation of fluorine-containing functional groups. Specifically, efficient synthetic methods and regioselectivity in the incorporation of functional groups into isoquinoline ring systems are examined.


Synlett ◽  
2019 ◽  
Vol 30 (16) ◽  
pp. 1855-1866 ◽  
Author(s):  
Steven M. Weinreb

This Account describes studies carried out by my group during the past decade on both intra- and intermolecular conjugate additions of carbon nucleophiles to nitrosoalkenes. Using the Denmark protocol for the generation of nitrosoalkenes from α-chloro-O-silyloximes, a number of bridged and fused bicyclic ring systems can be prepared via the intramolecular version of this process. Intermolecular conjugate addition reactions of nitrosoalkenes with a wide variety of ester enolates as coupling partners can also be achieved efficiently using a similar procedure. Some stereochemical aspects of these nucleophilic additions have been studied with both acyclic and cyclic nitrosoalkenes. This methodology has been applied as key steps in synthetic approaches to some complex indole and Myrioneuron alkaloids.1 Introduction2 Conjugate Additions of Nitrosoalkenes2.1 Background2.2 Intramolecular Reactions2.3 Intermolecular Reactions2.4 Stereochemical Aspects3 Applications to Natural Product Synthesis3.1 Angustilodine and Related Alkaloids3.2 Approach to Apparicine-Type Alkaloids3.3 Myrioneurinol4 Summary and Outlook


1990 ◽  
Vol 68 (9) ◽  
pp. 887-905 ◽  
Author(s):  
L. K. Mansur

Irradiation of solid materials with energetic neutrons or charged particles can lead to profound changes in defect structure, microcomposition, and macroscopic properties. Such changes occur by atomic and microstructural mechanisms, some of which are familiar in "classical" physical metallurgy and materials science. However, other cases appear to be unique to irradiation. Irradiation has considerably broadened and indeed provided an entirely new dimension in materials science, since the energetic displacement of atoms potentially reaches to every property or process. The initial damaging events leading to the creation of point defects are generally complete in times of order 10−11 s. Subsequent changes in structure, composition, and properties take place in a span of much longer time scales corresponding to interstitial and vacancy diffusion, clustering, solute segregation, and precipitation. An extensive theoretical framework has been developed to understand the kinetics of these processes. Emphasis has been placed on both steady cumulative processes and on fluctuations, and on the appropriate application of stochastic and deterministic descriptions. Parallel and interactive experimental activities for both applied and basic programs over the past two decades have increased the level of phenomenological knowledge enormously. Much of the work has emphasized either high-dose phenomena such as irradiation-induced swelling, creep, embrittlement, phase instability, and solute segregation relevant to materials applications, or the properties, structures, and interactions of defects, which underlie more fundamental issues.


Sign in / Sign up

Export Citation Format

Share Document