scholarly journals Design, characterization and evaluation of β-hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery

RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18222-18230
Author(s):  
Luis M. De Leon-Rodriguez ◽  
Young-Eun Park ◽  
Dorit Naot ◽  
David S. Musson ◽  
Jillian Cornish ◽  
...  

Self-assembling peptide H4LMAX-RGDS hydrogels, designed to enhance bone regeneration, are cytocompatible and capable of delivering the bone anabolic factor lactoferrin to increase osteoblast cell number.

2016 ◽  
pp. 1379 ◽  
Author(s):  
Bin He ◽  
Yunsheng Ou ◽  
Ao Zhou ◽  
Yong Zhu ◽  
Shuo Chen ◽  
...  

2006 ◽  
Vol 80 (3) ◽  
pp. 1181-1190 ◽  
Author(s):  
Heather B. Nelson ◽  
Hengli Tang

ABSTRACT An intimate relationship between hepatitis C virus (HCV) replication and the physiological state of the host liver cells has been reported. In particular, a highly reproducible and reversible inhibitory effect of high cell density on HCV replication was observed: high levels of HCV RNA and protein can be detected in actively growing cells but decline sharply when the replicon cells reach confluence. Arrested cell growth of confluent cells has been proposed to be responsible for the inhibitory effect. Indeed, other means of arresting cell growth have also been shown to inhibit HCV replication. Here, we report a detailed study of the effect of cell growth and confluence on HCV replication using a flow cytometry-based assay that is not biased against cytostasis and reduced cell number. Although we readily reproduced the inhibitory effect of cell confluence on HCV replication, we found no evidence of inhibition by serum starvation, which arrested cell growth as expected. In addition, we observed no inhibitory effect by agents that perturb the cell cycle. Instead, our results suggest that the reduced intracellular pools of nucleosides account for the suppression of HCV expression in confluent cells, possibly through the shutoff of the de novo nucleoside biosynthetic pathway when cells become confluent. Adding exogenous uridine and cytidine to the culture medium restored HCV replication and expression in confluent cells. These results suggest that cell growth arrest is not sufficient for HCV replicon inhibition and reveal a mechanism for HCV RNA inhibition by cell confluence.


2016 ◽  
Vol 69 ◽  
pp. 200-207 ◽  
Author(s):  
Stefano Franchi ◽  
Chiara Battocchio ◽  
Martina Galluzzi ◽  
Emanuele Navisse ◽  
Annj Zamuner ◽  
...  

2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2020 ◽  
Author(s):  
Lucía Benítez ◽  
Lucas Barberis ◽  
Luciano Vellón ◽  
Carlos Alberto Condat

Abstract Background: Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods: A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results: The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions: Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. A specific condition for the growth of the cancer stem cell number is also obtained.


PEDIATRICS ◽  
1968 ◽  
Vol 41 (1) ◽  
pp. 30-46
Author(s):  
Donald B. Cheek

For many years the study of growth has rested mainly on the application of anthropometric techniques and the measurement of height and weight. A few years ago Tanner9 correctly pointed out that studies on body composition were mainly related to body weight and, therefore, added little to the thinking. A more penetrating approach to the study of growth was recommended.2 The present approach,11 documented in part here, has been to apply biochemical and physiological techniques for the measurement of body cell mass, cell size, cell number and, to some extent, cell function. Body function and heat production as well as maturational age have been of concern. These studies have been made in the same children at tile same time. It is anticipated that inspection of these three dimensions of growth, size, function, and maturational age should help to elucidate problems related to growth retardation. In the clinic it is possible to predict cell-extracellular mass of children by applying equations based on relationships between body composition and height and weight. We began by presenting information on growth of muscle and the differences between the sexes with the progress of time and with respect to size and number of cells. Increments in growth rate of the male at adolescence were found. Such differences in cell growth must be related to some extent to the restrictive action of estrogens on cell multiplication in the female and to the stimulating action of androgens in the male. Growth hormone is an important hormone for the multiplication of cells, while insulin is of importance to protein synthesis. Both hormones are needed for growth. Thyroid hormone appears to play a secondary role but is important to protein synthesis especially in early postnatal life. The energy requirement for normal growth is only slightly above the basal state and the visceral cell mass is the most direct standard of reference for heat production. Restriction of nutrition can either retard growth in the size of cells, in the number of cells, or both. Current studies58 show that ingestion of protein and calories incite the secretion of growth hormone and insulin in specific patterns and at appropriate times. Growth hormone has been labelled the "feasting" hormone and insulin tile "feasting" hormone.59 Thus, the subtle relationship between nutrition and cell growth becomes apparent. Of concern is the possibility that overnutrition early in life may program excess secretion of hormones such as insulin or growth hormone. Overnutrition is a major problem in the affluent society, while conservative nutrition is compatible with longevity.6 Hirsch, et al.60 informs us that growth of adipose tissue is mainly by cell number increase–as we have seen for muscle. Again, a steady state of cell number is reached for fat cells. But, obese subjects have an excess of fat cells which do not disappear with time and diet. Such cells become increasingly insensitive to insulin as they enlarge.61 One might view the passing parade of life and growth and observe the relation of the intracellular phase to body weight from infancy to senility (Fig. 12). Here we see the upward increase of cell mass with respect to time and body weight increase. The adult data are taken from F. D. Moore.62 Clearly, with senility we can suspect that more and more of the body weight is extracellular or connective tissue and less and less of the weight is soft tissue or oxidizing protoplasm. Data on body potassium are even more remarkable in this demonstration.11 It is difficult to say with Browning: Grow old along with me! The best is yet to be.... Nevertheless, it is possible that with increased information and research the understanding of these stages of cell growth will be achieved and, no doubt, the departure from the steady state of cell population which occurs at the autumn of our existence– when cancer, and cardiovascular disease supervene–will be understood.63 However, the problems of aging can only be exposed after the physiology of growth is understood.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 19943-19958 ◽  
Author(s):  
Jiaju Lu ◽  
Xiaoqing Yan ◽  
Xun Sun ◽  
Xuezhen Shen ◽  
Heyong Yin ◽  
...  

We developed the functionalized self-assembling peptide nanofiber hydrogel RAD/KLT/RGI that was dual-functionalized with VEGF- and BDNF-mimetic peptide epitopes for peripheral nerve regeneration.


Theranostics ◽  
2020 ◽  
Vol 10 (18) ◽  
pp. 8227-8249
Author(s):  
Shuhui Yang ◽  
Chong Wang ◽  
Jinjin Zhu ◽  
Changfeng Lu ◽  
Haitao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document