scholarly journals Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 380-389
Author(s):  
Mohammad Al-Yaari ◽  
Tawfik A. Saleh ◽  
Osama Saber

This work aims at the synthesis of a polymer of poly-trimesoyl chloride and polyethyleneimine grafted on carbon fibers (PCF) derived from palm to remove mercury (ii) from aqueous solutions using batch adsorption studies at different temperatures.

RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5685-5694 ◽  
Author(s):  
Mohammad Khazaei ◽  
Simin Nasseri ◽  
Mohammad Reza Ganjali ◽  
Mehdi Khoobi ◽  
Ramin Nabizadeh ◽  
...  

The Fe3O4@DHAQ_GO nanocomposite can serve as an efficient adsorbent for the selective removal of lead from polluted water.


2018 ◽  
Vol 78 (11) ◽  
pp. 2328-2337 ◽  
Author(s):  
Jéssica C. Zanette ◽  
Márcia T. Veit ◽  
Gilberto C. Gonçalves ◽  
Soraya M. Palácio ◽  
Fernando R. Scremin ◽  
...  

Abstract This study evaluated the prednisone removal from aqueous solutions using adsorption by an activated carbon of vegetal origin (VAC). A central composite rotatable design (CCRD) and the response surface methodology (RSM) were used to verify the influence of the parameters: pH, adsorbent dose and prednisone concentration in a batch adsorption process. Among the analyzed parameters, only the adsorbent dose and the prednisone concentration were statistically significant (α = 0.05) and the critical values obtained were adsorbent dose: 1.87 g/L, pH 7.56 and prednisone concentration: 3.66 mg/L with 77.51% of prednisone removal by VAC. The kinetic study of the adsorption of prednisone reached the equilibrium in 4 h. The pseudo-first-order model described adequately the kinetics data behavior. The equilibrium experimental data obtained at different temperatures showed that the VAC has a maximum adsorption capacity of 18.04 mg/g at a temperature of 30 °C. The prednisone removal decreased by the increasing temperature and the Langmuir isotherm well described the experimental data (R² > 0.98). Thermodynamic results shown that the prednisone removal of aqueous solutions by VAC is spontaneous and favorable process.


2015 ◽  
Vol 1088 ◽  
pp. 533-539
Author(s):  
Su Hong Chen ◽  
Jian Zhang ◽  
Zhi Jun Han ◽  
Cheng Lu Zhang ◽  
Qin Yan Yue

This study investigates the potential use of activated carbon prepared from Phragmites Australis for the removal of 2,4-dichlorophenol (DCP) and Rhodamine-B (RB) from aqueous solutions. P. Australis activated carbon (PAAC), a new adsorbent, was prepared from P. Australis by H3PO4 activation. Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial 2,4-DCP and RB concentration. Accordingly, the activated carbon developed in this study is effective and practical for utilization in wastewater treatment for 2,4-DCP and RB removal.


2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractSince the cytocompatibility of carbon nanofibers with respect to neural applications remains largely uninvestigated, the objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers. Carbon fiber substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 200 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Astrocytes (glial scar tissue-forming cells) and pheochromocytoma cells (PC-12; neuronal-like cells) were seeded separately onto the substrates. Results provided the first evidence that astrocytes preferentially adhered on the carbon fiber that had the largest diameter and the lowest surface energy. PC-12 cells exhibited the most neurites on the carbon fiber with nanodimensions and low surface energy. These results may indicate that PC-12 cells prefer nanoscale carbon fibers while astrocytes prefer conventional scale fibers. A composite was formed from poly-carbonate urethane and the 60 nm carbon fiber. Composite substrates were thus formed using different weight percentages of this fiber in the polymer matrix. Increased astrocyte adherence and PC-12 neurite density corresponded to decreasing amounts of the carbon nanofibers in the poly-carbonate urethane matrices. Controlling carbon fiber diameter may be an approach for increasing implant contact with neurons and decreasing scar tissue formation.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Theresa C. Umeh ◽  
John K. Nduka ◽  
Kovo G. Akpomie

AbstractDeterioration in soil–water environment severely contributed by heavy metal bioavailability and mobility on soil surface and sub-surface due to irrational increase in wastewater discharge and agrochemical activities. Therefore, the feasibility of adsorption characteristics of the soil is paramount in curbing the problem of micropollutant contamination in the farming vicinity. Soil from a farming site in a populated area in Enugu, Nigeria was collected and tested to measure the lead and cadmium contents using atomic absorption spectrophotometer (AAS). The adsorption potency of the ultisol soil was estimated for identifiable physicochemical properties by standard technique. The mean activity concentration of Pb2+ and Cd2+ was 15.68 mg/kg and 3.01 mg/kg. The pH, temperature, metal concentration and contact time adsorptive effect on the Pb2+ and Cd2+ uptake was evaluated by batch adsorption technique. The Langmuir, Freundlich and Temkin models were fitted into equilibrium adsorption data and the calculated results depict a better and satisfactory correlation for Langmuir with higher linear regression coefficients (Pb2+, 0.935 and Cd2+, 0.971). On the basis of sorption capacity mechanism of the soil, pseudo-second-order model best described the kinetics of both metal ions retention process. The results of the present study indicated that the soil being a low cost-effective adsorbent can be utilized to minimize the environmental risk impact of these metal ions.


Sign in / Sign up

Export Citation Format

Share Document