scholarly journals A metabolically engineered spin-labeling approach for studying glycans on cells

2020 ◽  
Vol 11 (46) ◽  
pp. 12522-12532
Author(s):  
Mohit Jaiswal ◽  
Trang T. Tran ◽  
Qingjiang Li ◽  
Xin Yan ◽  
Mingwei Zhou ◽  
...  

Metabolic glycan engineering (MGE) coupled with nitroxide spin-labeling (SL) was utilized to investigate the heterogeneous environment of cell surface glycans in select cancer and normal cells.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-An Chen ◽  
Yong-Da Sie ◽  
Tsung-Yun Liu ◽  
Hsiang-Ling Kuo ◽  
Pei-Yi Chou ◽  
...  

AbstractMetastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112596 ◽  
Author(s):  
Luciano Antonio Reolon ◽  
Carolina Lumertz Martello ◽  
Irene Silveira Schrank ◽  
Henrique Bunselmeyer Ferreira

Author(s):  
Hector Sanchez ◽  
Daniel Hopkins ◽  
Sally Demirdjian ◽  
Cecilia Gutierrez ◽  
George A. O’Toole ◽  
...  

2017 ◽  
Vol 2 (28) ◽  
pp. 8865-8869 ◽  
Author(s):  
Madhuri Gade ◽  
Preeti Madhukar Chaudhary ◽  
Hirekodathakallu V. Thulasiram ◽  
Raghavendra Kikkeri

1999 ◽  
Vol 112 (24) ◽  
pp. 4751-4761
Author(s):  
G. Svineng ◽  
S. Johansson

We have previously identified the integrin (beta)1C-2 and characterised the distribution of (beta)1C-1 and (beta)1C-2 transcripts in various cell lines and normal cells. In this study we have investigated the expression of the two (beta)1C-variants in integrin (beta)1 deficient mouse GD25T cells. After stable transfection of the GD25T cells with cDNAs coding for (beta)1A, (beta)1C-1 and (beta)1C-2, the cell surface expression of the (beta)1C-1 and (beta)1C-2 variants was found to be very low while the (beta)1A variant was expressed at high levels. Northern blot analysis showed that the level of (beta)1-transcript in the (beta)1C-1 and (beta)1C-2 clones was equal or higher than in the (beta)1A clones. Metabolic labelling and deglycosylation by endoglycosidase H treatment clearly demonstrated that the majority of the (beta)1C-1 and (beta)1C-2 chains did not become maturely glycosylated, nor did they dimerize with (alpha) subunits. After 20 hours of chase, the labelled (beta)1C-1 and (beta)1C-2 chains had been gradually degraded, whereas immature (beta)1A was converted into the maturely glycosylated form during the same period of time. Immunostaining showed intracellular (beta)1 localisation in the (beta)1C-1 and (beta)1C-2 expressing clones, while in the (beta)1A expressing clones the (beta)1 chains were mainly localised to focal adhesion sites and along fibronectin fibres. Taken together, we have shown that expression of both integrin (beta)1C-1 and (beta)1C-2 in GD25T cells result in very low cell surface expression compared with the normal (beta)1A isoform. Instead, both (beta)1C-1 and (beta)1C-2 chains remain in the endoplasmic reticulum until they are intracellularly degraded.


Author(s):  
Alan Wanke ◽  
Milena Malisic ◽  
Stephan Wawra ◽  
Alga Zuccaro

Abstract To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant–microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document