A bifunctional hexa-filamentous microfibril multimetallic foam: an unconventional high-performance electrode for total water splitting under industrial operation conditions

Author(s):  
Hashikaa Rajan ◽  
Maria Christy ◽  
Vasanth Rajendiran Jothi ◽  
S. Anantharaj ◽  
Sung Chul Yi

Cellulose in various forms possesses high strength, low density, and high aspect ratio with a three-dimensional open network structure, making them ideal candidates as current collectors in energy conversion application.

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000
Author(s):  
Abdelfattah Mohamed Seyam ◽  
Rahul Vallabh ◽  
Ahmed H. Hassanin

High strength fibers such as PBO and Kevlar are used to produce composites, bulletproof vests, tendons of giant scientific balloons, and other high performance products. These fibers, however, are known to degrade upon exposure to Ultraviolet (UV) radiation which causes premature failure of the end-products. Improving UV resistance of high strength fibers like PBO through methods such as adding UV inhibiting particles during filament spinning or dyeing/coating process is not only extremely difficult, but often fails to provide the adequate UV protection. As an alternative to conventional approaches, UV protection of high performance yarns/braids can be effectively achieved by covering them with a polymeric sheath containing dispersed UV inhibiting nanoparticles. In this work, a computational model was developed to optimize critical factors such as thickness (weight) of the protective sheath and the amount of UV blockers for a given particle size, which influence the UV protective efficiency of the sheath. In order to simulate three-dimensional dispersion of nanoparticles in a polymer matrix, the model considers a random distribution of cylindrical nanoparticles of different size, aspect ratio, and volume fraction in a three-dimensional volume of protective sheath of a given length, width, and thickness. 2D visualization and image analysis techniques were utilized to determine the area projected by the particles on the x-y plane (areal coverage provided by nanoparticles). The areal coverage values obtained from the model were found to be higher than the experimental results due to the agglomeration of nanoparticles in the sheath caused during the polymer compounding process. However, the purpose of the model is to serve as a benchmarking tool to aid in the design and development of UV protective sheaths and films, and not to estimate absolute UV protection values. Analysis of the relationship between areal coverage and various input parameters in the model show that areal coverage increases with an increase in particle volume fraction and film thickness, and a decrease in particle diameter and length. It was also found that areal coverage was more significantly influenced by particle aspect ratio than by particle length.


Author(s):  
Daiji Noda ◽  
Masaru Setomoto ◽  
Tadashi Hattori

Recently, the demand of micro-fabrications such as micro-sensors, microcoils, micro-actuators etc is increasing. Actuators account for a large percentage and volume and weight of a product compared with other parts. Therefore, the progress in downsizing of actuators was required. In order to resolve these problems, the key technology to realizing micro-devices is micro-fabrication process. Particularly, it is essential to the technologies for processing high aspect ratio structures in the production of micro-parts. We have proposed a three-dimensional fabrication process using X-ray lithography technique, and fabricated spiral microcoils having coil lines of narrow pitch and high aspect ratio structures. We have fabricated spiral microcoils at a pitch of 60 μm, and aspect ratio of about 5 using X-ray lithography and narrow metallization techniques on acrylic pipe surface. In addition, we also estimated the suction force of electromagnetic actuators using these microcoils. Measurement results were relatively in good agreement with theoretical values using high aspect ratio microcoils. It is very expected that the high performance microcoils could be manufactured in spite of miniature size.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Nano Research ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 990-1004 ◽  
Author(s):  
Sangbaek Park ◽  
Hyun-Woo Shim ◽  
Chan Woo Lee ◽  
Hee Jo Song ◽  
Ik Jae Park ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mana Iwai ◽  
Tatsuya Kikuchi ◽  
Ryosuke O. Suzuki

AbstractHigh-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


Sign in / Sign up

Export Citation Format

Share Document