Switching photodiodes based on (2D/3D) PdSe2/Si heterojunctions with a broadband spectral response

2021 ◽  
Vol 9 (11) ◽  
pp. 3998-4007
Author(s):  
Sikandar Aftab ◽  
Ms Samiya ◽  
Wugang Liao ◽  
Muhammad Waqas Iqbal ◽  
Mavra Ishfaq ◽  
...  

Noble metal dichalcogenides (NMDs) are two-dimensional (2D) layered materials that exhibit outstanding thickness-dependent tunable-bandgaps that can be suitable for various optoelectronic applications.

Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 13245-13256 ◽  
Author(s):  
Elton J. G. Santos ◽  
Declan Scullion ◽  
Ximo S. Chu ◽  
Duo O. Li ◽  
Nathan P. Guisinger ◽  
...  

Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance.


SPIN ◽  
2015 ◽  
Vol 05 (04) ◽  
pp. 1540011 ◽  
Author(s):  
Guohui Su ◽  
Xing Wu ◽  
Wenqi Tong ◽  
Chungang Duan

The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 520 ◽  
Author(s):  
Minas M. Stylianakis

Over the last decade, novel materials such as graphene derivatives, transition metal dichalcogenides (TMDs), other two-dimensional (2D) layered materials, perovskites, as well as metal oxides and other metal nanostructures have centralized the interest of the scientific community [...]


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Leilei Xu ◽  
Jiafeng Feng ◽  
Kangkang Zhao ◽  
Weiming Lv ◽  
Xiufeng Han ◽  
...  

Two-dimensional (2D) layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR) properties of a black phosphorus (BP) spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM) electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1557-1577 ◽  
Author(s):  
Xianguang Yang ◽  
Baojun Li

AbstractTransition metal dichalcogenides are two-dimensional semiconductors with strong in-plane covalent and weak out-of-plane interactions, resulting in exfoliation into monolayers with atomically thin thickness. This creates a new era for the exploration of two-dimensional physics and device applications. Among them, MoS2 is stable in air and easily available from molybdenite, showing tunable band-gaps in the visible and near-infrared waveband and strong light-matter interactions due to the planar exciton confinement effect. In the single-layer limit, monolayer MoS2 exhibits direct band-gaps and bound excitons, which are fundamentally intriguing for achieving the nanophotonic and optoelectronic applications. In this review, we start from the characterization of monolayer MoS2 in our group and understand the exciton modes, then explore thermal excitons and band renormalization in monolayer MoS2. For nanophotonic applications, the recent progress of nanoscale laser source, exciton-plasmon coupling, photoluminescence manipulation, and the MoS2 integration with nanowires or metasurfaces are overviewed. Because of the benefits brought by the unique electronic and mechanical properties, we also introduce the state of the art of the optoelectronic applications, including photoelectric memory, excitonic transistor, flexible photodetector, and solar cell. The critical applications focused on in this review indicate that MoS2 is a promising material for nanophotonics and optoelectronics.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3437-3452
Author(s):  
Rui Chen ◽  
Jinhua Cao ◽  
Stephen Gee ◽  
Yin Liu ◽  
Jie Yao

AbstractTwo-dimensional (2D) layered materials hosting dislocations have attracted considerable research attention in recent years. In particular, screw dislocations can result in a spiral topology and an interlayer twist in the layered materials, significantly impacting the stacking order and symmetry of the layers. Moreover, the dislocations with large strain and heavily distorted atomic registry can result in a local modification of the structures around the dislocation. The dislocations thus provide a useful route to engineering optical, electrical, thermal, mechanical and catalytic properties of the 2D layered materials, which show great potential to bring new functionalities. This article presents a comprehensive review of the experimental and theoretical progress on the growth and properties of the dislocated 2D layered materials. It also offers an outlook on the future works in this promising research field.


2020 ◽  
Vol 5 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Viviana Jehová González ◽  
Antonio M. Rodríguez ◽  
Ismael Payo ◽  
Ester Vázquez

Different 2D-layered materials of transition metal dichalcogenides (TMDCs) such as boron nitride (BN) or molybdenum disulphide (MoS2) have been theorised to have piezoelectric behaviour.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850138
Author(s):  
Seungwook Son ◽  
Dongwook Kim ◽  
Sutassana Na-Phattalung ◽  
Jisoon Ihm

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.


Sign in / Sign up

Export Citation Format

Share Document