scholarly journals Influence of Piezoelectric Performance on Nonlinear Dynamic Characteristics of MFC Shells

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiangying Guo ◽  
Pan Jiang ◽  
Dongxing Cao

Based on the structures of unmanned aerial vehicle (UAV) wings, nonlinear dynamic analysis of macrofiber composite (MFC) laminated shells is presented in this paper. The effects of piezoelectric properties and aerodynamic forces on the dynamic stability of the MFC laminated shell are studied. Firstly, under the flow condition of ideal incompressible fluid, the thin airfoil theory is employed to calculate the effects of the mean camber line to obtain the circulation distribution of the wings in subsonic air flow. The steady aerodynamic lift on UAV wings is derived by using the Kutta–Joukowski lift theory. Then, considering the geometric nonlinearity and piezoelectric properties of the MFC material, the nonlinear dynamic model of the MFC laminated shell is established with Hamilton’s principles and the Galerkin method. Next, the effects of electric field, external excitation force, and nonlinear parameters on the stability of the system are studied under 1 : 1 internal resonance and the effects of material parameters on the natural frequency of the structure are also analyzed. Furthermore, the influence of the aerodynamic forces and electric field on the nonlinear dynamic responses of MFC laminated shells is discussed by numerical simulation. The results indicate that the electric field and external excitation have great influence on the structural dynamic responses.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7279
Author(s):  
Jin Wei ◽  
Tao Yu ◽  
Dongping Jin ◽  
Mei Liu ◽  
Dengqing Cao ◽  
...  

A dynamic model of an L-shaped multi-beam joint structure is presented to investigate the nonlinear dynamic behavior of the system. Firstly, the nonlinear partial differential equations (PDEs) of motion for the beams, the governing equations of the tip mass, and their matching conditions and boundary conditions are obtained. The natural frequencies and the global mode shapes of the linearized model of the system are determined, and the orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to derive a set of nonlinear ordinary differential equations (ODEs) that govern the motion of the L-shaped multi-beam jointed structure. The accuracy of the model is verified by the comparison of the natural frequencies solved by the frequency equation and the ANSYS. Based on the nonlinear ODEs obtained in this model, the dynamic responses are worked out to investigate the effect of the tip mass and the joint on the nonlinear dynamic characteristic of the system. The results show that the inertia of the tip mass and the nonlinear stiffness of the joints have a great influence on the nonlinear response of the system.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Xiangying Guo ◽  
Dameng Liu ◽  
Wei Zhang ◽  
Lin Sun ◽  
Shuping Chen

This work presents the nonlinear dynamical analysis of a multilayer d31 piezoelectric macrofiber composite (MFC) laminated shell. The effects of transverse excitations and piezoelectric properties on the dynamic stability of the structure are studied. Firstly, the nonlinear dynamic models of the MFC laminated shell are established. Based on known selected geometrical and material properties of its constituents, the electric field of MFC is presented. The vibration mode-shape functions are obtained according to the boundary conditions, and then the Galerkin method is employed to transform partial differential equations into two nonlinear ordinary differential equations. Next, the effects of the transverse excitations on the nonlinear vibration of MFC laminated shells are analyzed in numerical simulation and moderating effects of piezoelectric coefficients on the stability of the system are also presented here. Bifurcation diagram, two-dimensional and three-dimensional phase portraits, waveforms phases, and Poincare diagrams are shown to find different kinds of periodic and chaotic motions of MFC shells. The results indicate that piezoelectric parameters have strong effects on the vibration control of the MFC laminated shell.


The Analyst ◽  
2021 ◽  
Author(s):  
Fuxing Xu ◽  
Weimin Wang ◽  
Bingjun Qian ◽  
Liuyu Jin ◽  
Chuanfan Ding

The effective electric field radius is a fundamental parameter of ion trap which has great influence on ion trapping capability, signal intensity, mass range and some other properties of ion...


2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


1988 ◽  
Vol 9 (3) ◽  
pp. 241-251
Author(s):  
Zhang Yi-song ◽  
Xu Yin-ge ◽  
Gao Dc-ping

Sign in / Sign up

Export Citation Format

Share Document