Upconversion luminescence and optical temperature-sensing property of LiNbO3:Yb3+/Er3+ nanoparticles

CrystEngComm ◽  
2022 ◽  
Author(s):  
Xuan Tong ◽  
Xin Zhou ◽  
XunZe Tang ◽  
Yonggang Min ◽  
XiaoLong Li ◽  
...  

LiNbO3:Yb3+/Er3+ nanocubes with the average diameter of approximately 500 nm were firstly applied in non-invasion optical temperature sensors. As increasing the annealing temperature, a two orders of magnitude enhancement of...

2021 ◽  
Vol 31 (1) ◽  
pp. 113-115
Author(s):  
Olga A. Lipina ◽  
Ludmila L. Surat ◽  
Alexander Yu. Chufarov ◽  
Alexander P. Tyutyunnik ◽  
Vladimir G. Zubkov

CrystEngComm ◽  
2018 ◽  
Vol 20 (14) ◽  
pp. 2029-2035 ◽  
Author(s):  
Aihua Zhou ◽  
Feng Song ◽  
Yingdong Han ◽  
Feifei Song ◽  
Dandan Ju ◽  
...  

β-NaLuF4:Yb3+/Er3+ microcrystals have been obtained through a facile hydrothermal method at a relatively low temperature (180 °C) within only two hours.


2015 ◽  
Vol 738-739 ◽  
pp. 27-30
Author(s):  
Dong Dong Li ◽  
Qi Yue Shao ◽  
Yan Dong ◽  
Jian Qing Jiang

Hexagonal (β)-phase NaYF4:Yb3+, Er3+ upconversion nanoparticles (UCNPs) with and without an inert (undoped NaYF4) shell have been successfully synthesized and the effects of shell thickness on the upconversion luminescence (UCL) and temperature sensing properties were systematically investigated. It was found that the NaYF4 shell and its thickness do not affect the RHS values and thermal sensitivity, but can obviously improve the UCL intensity of NaYF4:Yb3+, Er3+ UCNPs. It implies that the core-shell structured NaYF4:Yb3+, Er3+@NaYF4 UCNPs with excellent UCL properties have great potential to be used as temperature sensing probes in biomedical fields, without considering the influences of the shell thickness on their temperature sensing properties.


2021 ◽  
Vol 13 (7) ◽  
pp. 1318-1323
Author(s):  
Myeong-Cheol Shin ◽  
Dong-Hyeon Kim ◽  
Seong-Woo Jung ◽  
Michael A. Schweitz ◽  
Sang-Mo Koo

ABSTRACTThis study report on the formation of AlN/SiC heterostructure Schottky diodes for use of temperature sensing applications enhance the sensitivity. We analyzed the sensitivity of the AlN/SiC Schottky diode sensor depending on the annealing temperature. AlN/4H-SiC Schottky diodes were fabricated by depositing aluminum nitride (AlN) thin film on 4H/SiC by radio frequency sputtering. The forward bias electrical characteristics were determined under DC bias (in the voltage range of 0–1.5 V). The ideality factor, barrier height, and sensitivity were derived through current–voltage–temperature (I–V–T) measurements in the temperature range of 300–500 K. The sensitivity of the AlN/4H-SiC Schottky barrier diode ranged from 2.5–5.0 mV/K.


2021 ◽  
Vol 42 (1) ◽  
pp. 91-97
Author(s):  
Ye JIN ◽  
◽  
Kun LI ◽  
Xu LUO ◽  
Li MA ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 626 ◽  
Author(s):  
Waleri Root ◽  
Thomas Bechtold ◽  
Tung Pham

The integration of conductive materials in textiles is key for detecting temperature in the wearer´s environment. When integrating sensors into textiles, properties such as their flexibility, handle, and stretch must stay unaffected by the functionalization. Conductive materials are difficult to integrate into textiles, since wires are stiff, and coatings show low adhesion. This work shows that various substrates such as cotton, cellulose, polymeric, carbon, and optical fiber-based textiles are used as support materials for temperature sensors. Suitable measurement principles for use in textiles are based on resistance changes, optical interferences (fiber Bragg grating), or thermoelectric effects. This review deals with developments in the construction of temperature sensors and the production of thermocouples for use in textiles. The operating principle of thermocouples is based on temperature gradients building up between a heated and a cold junction of two conductors, which is converted to a voltage output signal. This work also summarizes integration methods for thermocouples and other temperature-sensing techniques as well as the manufacture of conductive materials in textiles. In addition, textile thermocouples are emphasized as suitable and indispensable elements in sensor concepts for smart textiles.


Sign in / Sign up

Export Citation Format

Share Document