Precrystalline P3HT nanowires: growth-controllable solution processing and effective molecular packing transfer to thin-film

CrystEngComm ◽  
2022 ◽  
Author(s):  
Seon-Mi Jin ◽  
Jun Ho Hwang ◽  
Jung Ah Lim ◽  
Eunji Lee

Solution-processable precrystalline nanowires (NWs) of conjugated polymers (CPs) have garnered significant attention in fundamental research based on crystallization-driven self-assembly and in the roll-to-roll fabrication of optoelectronic devices such as organic...

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Lin-Lin Xiao ◽  
Xu Zhou ◽  
Kan Yue ◽  
Zi-Hao Guo

In the past two decades, conjugated polymers (CPs) have drawn great attention due to their excellent conductivity and charge mobility, rendering them broad applications in organic electronics. Controlling over the morphologies and nanostructures of CPs is very important to improve the performance of CP-based devices, which is still a tremendously difficult task. Conjugated block copolymers (cBCPs), composed of different CP blocks or CP coupled with coiled polymeric blocks, not only maintain the advantages of high conductivity and mobility but also demonstrate features of morphological versatility and tunability. Due to the strong π–π interaction and crystallinity of the conjugated backbones, the self-assembly behaviors of cBCPs are very complicated and largely remain to be explored. In this tutorial review, we first summarize the general synthetic methods for different types of cBCPs. Then, recent studies on the self-assembly behaviors of cBCPs are discussed, with an emphasis on the structural factors that affect the morphologies of cBCPs both in bulk and thin film states. Finally, we briefly provide our outlook on the future research of the self-assembly of cBCPs.


2021 ◽  
Author(s):  
Jian Pei ◽  
Zi-Yuan Wang ◽  
Lucia Di Virgilio ◽  
Ze-Fan Yao ◽  
Zi-Di Yu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4239
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water–air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron X-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid–liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


Author(s):  
Mohamed H. Abdel‐Aziz ◽  
Mohammed Zwawi ◽  
Ahmed F. Al‐Hossainy ◽  
Mohamed Sh. Zoromba

2021 ◽  
Vol 11 (1) ◽  
pp. 378
Author(s):  
Grigorios Koutsoukis ◽  
Ivan Alic ◽  
Antonios Vavouliotis ◽  
Ferry Kienberger ◽  
Kamel Haddadi

A free-space microwave nondestructive testing and evaluation module is developed for the low-power, non-ionizing, contactless, and real-time characterization of doped composite thin-film materials in an industrial context. The instrumentation proposed is built up with a handled vector network analyzer interfaced with corrugated horn antennas to measure the near-field complex reflection S11 of planar prepreg composite materials in a roll-to-roll in-line production line. Dedicated modeling and calibrations routines are developed to extract the microwave conductivity from the measured microwave signal. Practical extraction of the radiofrequency (RF) conductivity of thin film prepreg composite materials doped with nano-powders is exemplary shown at the test frequency of 10 GHz.


2020 ◽  
Vol 2 (11) ◽  
pp. 4893-4901
Author(s):  
Karthika Madathil ◽  
Kayla A. Lantz ◽  
Morgan Stefik ◽  
Gila E. Stein

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1412
Author(s):  
Eunkyung Ji ◽  
Cian Cummins ◽  
Guillaume Fleury

The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.


2013 ◽  
Vol 562-565 ◽  
pp. 441-445
Author(s):  
Yan Xia Yan ◽  
Li Ying Jiang ◽  
Fen Fen Wang ◽  
Yan Zhang ◽  
Jie Hu

A new fabrication methods of thin-film gold electrode is reported. Electrochemical characteristics of self-assembly aptasensor based on MEMS thin-film gold electrode has been studied by lots of experiments, characteristics include immobilizing time, AC impedance, CV curves. Experiments indicate immobilizing time of DNA-SH on gold electrode is more than 15 hours. CV curves and AC impedance of MEMS thin-film gold electrode show the same conclusion that 20μm/L DNA is optimum concentration when DNA is immobilized on gold electrode. Those results present a potential universal method for other aptasensors.


Sign in / Sign up

Export Citation Format

Share Document