Unravelling the Metal-Support Interactions in χ-Fe5C2/MgO Catalysts for Olefins Synthesis Directly from Syngas

Author(s):  
Yitao Liu ◽  
Xianglin Liu ◽  
Zixu Yang ◽  
Hu Li ◽  
Xiaoxu Ding ◽  
...  

We reported the χ-Fe5C2/MgO catalyst for olefins synthesis directly from syngas (STO), showing high selectivity to C2-C4 olefins and catalytic stability. With characterization of morphology, electronic structures, and adsorption/desorption properties...

Cerâmica ◽  
2018 ◽  
Vol 64 (370) ◽  
pp. 148-155
Author(s):  
A. C. Alexandrino ◽  
J. F. de Sousa ◽  
C. P. de Souza ◽  
C. P. B. de Araújo ◽  
M. V. M. Souto

Abstract Transition metal carbides have been successfully used as substitute materials for conventional noble metal catalyst in several important industrial reactions due to their interesting physicochemical properties. Surface structure, chemical composition and metal-support interactions, as well as processing conditions, are of utmost importance in the use of such materials in catalysis. The present study aimed to synthesize and evaluate pure molybdenum carbide with and without support, and bimetallic Mo-Ni carbide over a carbon active support derived from sewage sludge pyrolysis. The support was chemically (KOH) and physically (thermal treatment) activated before use. TG/DTG, XRD, XRF, SEM, BET and particle size evaluation were performed, together with adsorption/desorption isotherms. Results indicated that the applied synthesis method was adequate for the obtainment of pure materials. The increase in surface area of the support was significant, from 13 to 141 m².g-1 after the thermal and chemical treatment; also, supporting Mo2C over carbon provided an increase from 45 to 73 m².g-1 in surface area, which indicated its potential as a catalytic material as well as the effectiveness of the applied methodology.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1301
Author(s):  
Zully J. Suárez Montenegro ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.


CrystEngComm ◽  
2021 ◽  
Vol 23 (13) ◽  
pp. 2538-2546
Author(s):  
Min Yang ◽  
Guangshe Li ◽  
Huixia Li ◽  
Junfang Ding ◽  
Yan Wang ◽  
...  

For the first time, the growth behavior with size-dependent Fe occupancies at different sites of MgFe2O4 was examined. Hybrid catalysts of Pt/MgFe2O4 with a support size of 20.6 nm exhibited an optimal performance of CO oxidation.


1997 ◽  
Vol 167 (2) ◽  
pp. 573-575 ◽  
Author(s):  
Kaidong Chen ◽  
Yining Fan ◽  
Qijie Yan

Sign in / Sign up

Export Citation Format

Share Document