Investigation into effects of warmer conditions on seasonal runoff and dissolved carbon fluxes in permafrost catchments in northeast China

Author(s):  
Yuedong Guo ◽  
Changchun Song

Eurasian permafrost serves as an important carbon pool and water resource for linked aquatic ecosystems. To investigate the effects of expected warmer climate under climate change, and also to fill...

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 521
Author(s):  
Qinghe Zhao ◽  
Shengyan Ding ◽  
Xiaoyu Ji ◽  
Zhendong Hong ◽  
Mengwen Lu ◽  
...  

Human activities are increasingly recognized as having a critical influence on hydrological processes under the warming of the climate, particularly for dam-regulated rivers. To ensure the sustainable management of water resources, it is important to evaluate how dam construction may affect surface runoff. In this study, using Mann–Kendall tests, the double mass curve method, and the Budyko-based elasticity method, the effects of climate change and human activities on annual and seasonal runoff were quantified for the Yellow River basin from 1961–2018; additionally, effects on runoff were assessed after the construction of the Xiaolangdi Dam (XLD, started operation in 2001) on the Yellow River. Both annual and seasonal runoff decreased over time (p < 0.01), due to the combined effects of climate change and human activities. Abrupt changes in annual, flood season, and non-flood season runoff occurred in 1986, 1989, and 1986, respectively. However, no abrupt changes were seen after the construction of the XLD. Human activities accounted for much of the reduction in runoff, approximately 75–72% annually, 81–86% for the flood season, and 86–90% for the non-flood season. Climate change approximately accounted for the remainder: 18–25% (annually), 14–19% (flood season), and 10–14% (non-flood season). The XLD construction mitigated runoff increases induced by heightened precipitation and reduced potential evapotranspiration during the post-dam period; the XLD accounted for approximately 52% of the runoff reduction both annually and in the non-flood season, and accounted for approximately −32% of the runoff increase in the flood season. In conclusion, this study provides a basic understanding of how dam construction contributes to runoff changes in the context of climate change; this information will be beneficial for the sustainable management of water resources in regulated rivers.


2022 ◽  
Vol 305 ◽  
pp. 114394
Author(s):  
Peng Yang ◽  
Shengqing Zhang ◽  
Jun Xia ◽  
Yaning Chen ◽  
Yongyong Zhang ◽  
...  

Author(s):  
Shu-Ying Tseng ◽  
Po-Yu Liu ◽  
Yi-Hsuan Lee ◽  
Zong-Yen Wu ◽  
Chiu-Chen Huang ◽  
...  

Shewanella algaeis a rod-shaped Gram-negative marine bacterium frequently found in nonhuman sources such as aquatic ecosystems and has been shown to be the pathogenic agent in various clinical cases due to the ingestion of raw seafood. The results of this study showed thatS. algaewas present in approximately one in four samples, including water and shellfish samples. Positive reactions (API systems) inS. algaestrains were seen for gelatinase (gelatin); however, negative reactions were found for indole production (tryptophan).S. algaeis adapted to a wide range of temperatures (4°C, 25°C, 37°C, and 42°C) and salinity. Temperature is a key parameter in the pathogenicity ofS. algaeas it appears to induce hemolysis at 25°C and 37°C.S. algaeexhibits pathogenic characteristics at widely varying temperatures, which suggests that it may have the ability to adapt to climate change.


Sign in / Sign up

Export Citation Format

Share Document