In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests

2021 ◽  
Author(s):  
Marta Santos-Hernandez ◽  
Maria Cermeno ◽  
Isidra Recio ◽  
Richard J. FitzGerald

Dietary proteins are involved in the regulation of glucose homeostasis by different mechanisms. Food protein digestion products are reported to inhibit dipeptidyl peptidase IV (DPP-IV), induce incretin secretion or directly...

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Suguru Shigemori ◽  
Kazushi Oshiro ◽  
Pengfei Wang ◽  
Yoshinari Yamamoto ◽  
Yeqin Wang ◽  
...  

Previous studies showed that hydrolysates ofβ-lactoglobulin (BLG) prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV) activityin vitro. In this study, we developed a BLG-secretingLactococcus lactisstrain as a delivery vehicle andin situexpression system. Interestingly, trypsin-digested recombinant BLG fromL. lactisinhibited DPP-IV activity, suggesting that BLG-secretingL. lactismay be useful in the treatment of type 2 diabetes mellitus.


2020 ◽  
Vol 131 ◽  
pp. 108989 ◽  
Author(s):  
Pádraigín A. Harnedy-Rothwell ◽  
Chris M. McLaughlin ◽  
Martina B. O'Keeffe ◽  
Aurélien V. Le Gouic ◽  
Philip J. Allsopp ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Po-Kai Huang ◽  
Shian-Ren Lin ◽  
Chia-Hsiang Chang ◽  
May-Jwan Tsai ◽  
Der-Nan Lee ◽  
...  

Abstract Dipeptidyl peptidase IV (DPP IV) is a surface glycoprotein that can degrade glucagon like pepetide-1 (GLP-1) by decreasing blood sugar. Herbal medicines for diabetic therapy are widely used with acceptable efficacy but unsatisfied in advances. DPP IV was chosen as a template to employ molecular docking via Discovery Studio to search for natural phenolic compounds whether they have the inhibitory function of DPP IV. Then, docking candidates were validated and further performed signal pathway via Caco-2, C2C12, and AR42J cells. Lastly, a diet-induced diabetes in mice were applied to examine the efficacy and toxicity of hit natural phenolic products in long-term use (in vivo). After screening, curcumin, syringic acid, and resveratrol were found in high affinity with DPP IV enzymes. In enzymatic tests, curcumin and resveratrol showed potential inhibition of DPP IV. In vitro assays, curcumin inhibited of DPP IV activity in Caco-2 cells and ERK phosphorylation in C2C12 cells. Additionally, curcumin attenuated blood sugar in S961-treated C57BL/6 mice and in diet-induced diabetic ICR mice and long-term regulate HbA1c in diabetic mice. Curcumin targeted to DPP IV for reducing blood glucose, it possesses potential and alternative substitution of synthetic clinical drugs for the medication of diabetes.


2002 ◽  
Vol 172 (2) ◽  
pp. 355-362 ◽  
Author(s):  
CF Deacon ◽  
S Wamberg ◽  
P Bie ◽  
TE Hughes ◽  
JJ Holst

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are degraded by dipeptidyl peptidase IV (DPP IV), thereby losing insulinotropic activity. DPP IV inhibition reduces exogenous GLP-1 degradation, but the extent of endogenous incretin protection has not been fully assessed, largely because suitable assays which distinguish between intact and degraded peptides have been unavailable. Using newly developed assays for intact GLP-1 and GIP, the effect of DPP IV inhibition on incretin hormone metabolism was examined. Conscious dogs were given NVP-DPP728, a specific DPP IV inhibitor, at a dose that inhibited over 90% of plasma DPP IV for the first 90 min following treatment. Total and intact incretin concentrations increased (P<0.0001) following a mixed meal, but on control days (vehicle infusion), intact peptide concentrations were lower (P<0.01) than total peptide concentrations (22.6 +/- 1.2% intact GIP; 10.1 +/- 0.4% intact GLP-1). Following inhibitor treatment, the proportion of intact peptide increased (92.5 +/- 4.3% intact GIP, P<0.0001; 99.0 +/- 22.6% intact GLP-1, P<0.02). Active (intact) incretins increased after NVP-DPP728 (from 4797 +/- 364 to 10 649 +/- 106 pM x min for GIP, P<0.03; from 646 +/- 134 to 2822 +/- 528 pM x m in for GLP-1, P<0.05). In contrast, total incretins fell (from 21 632 +/- 654 to 12 084 +/- 1723 pM x min for GIP, P<0.002; from 5145 +/- 677 to 3060 +/- 601 pM x min for GLP-1, P<0.05). Plasma glucose, insulin and glucagon concentrations were unaltered by the inhibitor. We have concluded that DPP IV inhibition with NVP-DPP728 prevents N-terminal degradation of endogenous incretins in vivo, resulting in increased plasma concentrations of intact, biologically active GIP and GLP-1. Total incretin secretion was reduced by DPP IV inhibition, suggesting the possibility of a feedback mechanism.


2006 ◽  
Vol 52 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Inger Brandt ◽  
Anne-Marie Lambeir ◽  
Jean-Marie Ketelslegers ◽  
Marc Vanderheyden ◽  
Simon Scharpé ◽  
...  

Abstract Background: Analysis of plasma B-type natriuretic peptide (BNP) has suggested the in vivo formation of a truncated form, BNP (3–32), also called des-SerPro-BNP. The objectives of this study were to investigate (a) whether BNP and other natriuretic peptides are truncated by dipeptidyl-peptidase IV (DPP IV/CD26; EC 3.4.14.5) and (b) whether this truncation affects the susceptibility to cleavage by neutral endopeptidase (NEP; EC 3.4.24.11). Methods: Human BNP (1–32), A-type natriuretic peptide 1–28 (ANP 1–28), and related peptides were incubated with purified DPP IV and with human plasma. In addition, BNP (1–32), BNP (3–32), and ANP (1–28) were subjected to hydrolysis by NEP. Cleavage products were analyzed by mass spectrometry. Results: BNP (1–32) was cleaved by purified DPP IV with a specificity constant of 0.37 × 106 L · mol−1 · s−1. The DPP IV activity in EDTA-plasma was able to truncate BNP (1–32) ex vivo. Addition of Vildagliptin, a specific DPP IV inhibitor, prevented this truncation in a concentration-dependent manner. Under in vitro circumstances in which ANP was hydrolyzed extensively, BNP (1–32) and BNP (3–32) were very resistant to NEP-mediated cleavage. Conclusions: DPP IV cleaves BNP (1–32) with an efficiency higher than or comparable to several known in vivo substrates of the enzyme. Even after loss of the amino-terminal dipeptide, BNP remains highly resistant to cleavage by NEP.


2015 ◽  
Vol 65 ◽  
pp. 112-118 ◽  
Author(s):  
Alice B. Nongonierma ◽  
Solène Le Maux ◽  
Cécile Dubrulle ◽  
Chloé Barre ◽  
Richard J. FitzGerald

2019 ◽  
Vol 20 (2) ◽  
pp. 322 ◽  
Author(s):  
Yating Lu ◽  
Peng Lu ◽  
Yu Wang ◽  
Xiaodong Fang ◽  
Jianming Wu ◽  
...  

Dipeptidyl peptidase IV (DPP-IV) inhibitors occupy a growing place in the drugs used for the management of type 2 diabetes. Recently, food components, including food-derived bioactive peptides, have been suggested as sources of DPP-IV inhibitors without side effects. Chinese black tea is a traditional health beverage, and it was used for finding DPP-IV inhibitory peptides in this study. The ultra-filtrated fractions isolated from the aqueous extracts of black tea revealed DPP-IV inhibitory activity in vitro. Four peptides under 1 kDa were identified by SDS-PAGE and LC-MS/MS (Liquid Chromatography-Mass Spectrometry-Mass Spectrometry) from the ultra-filtrate. The peptide II (sequence: AGFAGDDAPR), with a molecular mass of 976 Da, showed the greatest DPP-IV inhibitory activity (in vitro) among the four peptides. After administration of peptide II (400 mg/day) for 57 days to streptozotocin (STZ)-induced hyperglycemic mice, the concentration of glucagon-like peptide-1 (GLP-1) in the blood increased from 9.85 ± 1.96 pmol/L to 19.22 ± 6.79 pmol/L, and the insulin level was increased 4.3-fold compared to that in STZ control mice. Immunohistochemistry revealed the improved function of pancreatic beta-cells and suppressed proliferation of pancreatic alpha-cells. This study provides new insight into the use of black tea as a potential resource of food-derived DPP-IV inhibitory peptides for the management of type 2 diabetes.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207 ◽  
Author(s):  
Anand-Krishna Singh ◽  
Pankaj Kumar Patel ◽  
Komal Choudhary ◽  
Jaya Joshi ◽  
Dhananjay Yadav ◽  
...  

Quercetin and coumarin, two naturally occurring phytochemicals of plant origin, are known to regulate hyperglycemia and oxidative stress. The present study was designed to evaluate the inhibitory activity of quercetin and coumarin on dipeptidyl peptidase-IV (DPP-IV) and their antioxidant potential. DPP-IV inhibition assays were performed, and evaluated IC50 values of diprotin A, quercetin, coumarin, and sitagliptin were found to be 0.653, 4.02, 54.83, and 5.49 nmol/mL, respectively. Furthermore, in silico studies such as the drug-likeliness and docking efficiency of quercetin and coumarin to the DPP-IV protein were performed; the ex vivo antiperoxidative potential of quercetin and coumarin were also evaluated. The results of the present study showed that the DPP-IV inhibitory potential of quercetin was slightly higher than that of sitagliptin. Virtual docking revealed the tight binding of quercetin with DPP-IV protein. Quercetin and coumarin reduced oxidative stress in vitro and ex vivo systems. We report for the first time that both compounds inhibited the DPP-IV along with antioxidant activity and thus may be use as function food ingredients in the prevention of diabetes.


2018 ◽  
Vol 9 (1) ◽  
pp. 407-416 ◽  
Author(s):  
Alice B. Nongonierma ◽  
Candice Lamoureux ◽  
Richard J. FitzGerald

Cricket (Gryllodes sigillatus) protein hydrolysates inhibit dipeptidyl peptidase IV (DPP-IV) in vitro.


2018 ◽  
Vol 19 (10) ◽  
pp. 2883 ◽  
Author(s):  
Marcela González-Montoya ◽  
Blanca Hernández-Ledesma ◽  
Rosalva Mora-Escobedo ◽  
Cristina Martínez-Villaluenga

Functional foods containing peptides offer the possibility to modulate the absorption of sugars and insulin levels to prevent diabetes. This study investigates the potential of germinated soybean peptides to modulate postprandial glycaemic response through inhibition of dipeptidyl peptidase IV (DPP-IV), salivary α-amylase, and intestinal α-glucosidases. A protein isolate from soybean sprouts was digested by pepsin and pancreatin. Protein digest and peptide fractions obtained by ultrafiltration (<5, 5–10 and >10 kDa) and subsequent semipreparative reverse phase liquid chromatography (F1, F2, F3, and F4) were screened for in vitro inhibition of DPP-IV, α-amylase, maltase, and sucrase activities. Protein digest inhibited DPP-IV (IC50 = 1.49 mg/mL), α-amylase (IC50 = 1.70 mg/mL), maltase, and sucrase activities of α-glucosidases (IC50 = 3.73 and 2.90 mg/mL, respectively). Peptides of 5–10 and >10 kDa were more effective at inhibiting DPP-IV (IC50 = 0.91 and 1.18 mg/mL, respectively), while peptides of 5–10 and <5 kDa showed a higher potency to inhibit α-amylase and α-glucosidases. Peptides in F1, F2, and F3 were mainly fragments from β-conglycinin, glycinin, and P34 thiol protease. The analysis of structural features of peptides in F1–F3 allowed the tentative identification of potential antidiabetic peptides. Germinated soybean protein showed a promising potential to be used as a nutraceutical or functional ingredient for diabetes prevention.


Sign in / Sign up

Export Citation Format

Share Document