Highly Efficient Copper Halide Scintillators for High-Performance and Dynamic X-ray Imaging

Nanoscale ◽  
2021 ◽  
Author(s):  
Quan Zhou ◽  
Jiwei Ren ◽  
Jiawen Xiao ◽  
Lin Lei ◽  
Feiyi Liao ◽  
...  

Progress towards high performance X-ray detection and dynamic imaging applications, including nondestructive inspection, homeland security, and medical diagnostics, requires scintillators with high light yield, reasonable decay time, low cost, and...

2020 ◽  
Author(s):  
Haibo Zeng ◽  
Xiaoming Li ◽  
Jiaxin Chen ◽  
Dandan Yang ◽  
Xi Chen ◽  
...  

Abstract Fluorescent type nuclear battery (NB) consisting of scintillator and photovoltaic device (PVD) enables semipermanent power source for both small and large devices working under harsh circumstances without instant energy supply. In spite of the progress of device structure design, the development of scintillators with high light yield (LY) and longer emission wavelength catering to PVDs is far behind. Here, a novel Cs3Cu2I5: Mn scintillator, which exhibits an ultrahigh LY of ~ 67000 ph/MeV at an emission wavelength of 564 nm is presented, and this is the highest value at such a long wavelength based on low cost precursors. Besides, doping and intrinsic features endow Cs3Cu2I5: Mn with robust thermal stability and irradiation hardness that 71% or > 90% of the initial radioluminescence (RL) intensity can be maintained in an ultra-broad temperature range of 77 K-433 K or after a total irradiation dose of 38.7 Gy at 333 K, respectively. These superiorities allow the fabrication of an efficient and stable NB, which showed an output improvement of 337% respect to that without scintillator. Luminescence mechanisms including self-trapped exciton, energy transfer, and impact excitation are proposed for the dramatic RL improvement. It is expected that such a new and robust scintillator will open a window for the fields of NBs and radiography.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiangyu Ou ◽  
Xue Chen ◽  
Xianning Xu ◽  
Lili Xie ◽  
Xiaofeng Chen ◽  
...  

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.


2013 ◽  
Vol 1576 ◽  
Author(s):  
Leonard Alaribe ◽  
Alex Fauler ◽  
Angelica Cecilia ◽  
Tomy Dos Santos Rolo ◽  
Michael Fiederle ◽  
...  

ABSTRACTMuch has been reported on the excellent performance of the Eu2+ activated SrI2-scintillator in spectroscopic applications, like the high light yield (97 660 ph/MeV) and good energy resolution (2.7% FWHM at 662 keV). The exploitation of these properties for other application fields is limited by the hygroscopic nature of the SrI2. Single crystal scintillating screens exhibit high spatial resolution, this combined with the high density, high effective atomic number, and the high light yield of the SrI2 could be used for high resolution X-ray imaging.Some of the questions we tried to answer in this work are the following: owing to the excellent performance of the SrI2-scintillator in spectroscopic applications, how would it perform in X-ray imaging applications. X-ray images are described based on their (spatial) resolution and contrast, how would they look like when recorded using the SrI2-scintillator detector.First a packaging technique was developed that protected the hygroscopic screens during the measurements. Our results show a high resolution of the images obtained with thin SrI2-scintillator screens both in 2D radiography and 3D tomography measurements. With these results, we think that the SrI2-scinitillator is not only a candidate for spectroscopic applications, but also for high resolution X-ray imaging purposes.


2021 ◽  
pp. 132826
Author(s):  
Lili Han ◽  
Hui Zhang ◽  
Yayun Ning ◽  
Huanyu Chen ◽  
Chao Guo ◽  
...  

2021 ◽  
Vol 33 (8) ◽  
pp. 2006010
Author(s):  
Yucheng Liu ◽  
Yunxia Zhang ◽  
Xuejie Zhu ◽  
Jiangshan Feng ◽  
Ioannis Spanopoulos ◽  
...  

1977 ◽  
Vol 16 (1) ◽  
pp. 94 ◽  
Author(s):  
Jay S. Pearlman ◽  
Robert F. Benjamin
Keyword(s):  
Low Cost ◽  
X Ray ◽  

2019 ◽  
Vol 9 (4) ◽  
pp. 793 ◽  
Author(s):  
Camila Zequine ◽  
Fangzhou Wang ◽  
Xianglin Li ◽  
Deepa Guragain ◽  
S.R. Mishra ◽  
...  

The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis. Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4 electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst and a promising electroactive material for hydrogen production. The two-electrode electrolyzer demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart. Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR catalyst for fuel cells to generate hydrogen at a low cost.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangeun Cho ◽  
Sungwoo Kim ◽  
Jongmin Kim ◽  
Yongcheol Jo ◽  
Ilhwan Ryu ◽  
...  

Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.


Sign in / Sign up

Export Citation Format

Share Document