Enhanced thermal conductivity of nanofluids by introducing Janus nanoparticles

Nanoscale ◽  
2021 ◽  
Author(s):  
Xin Cui ◽  
Jun Wang ◽  
Guodong Xia

The addition of nanoparticles to a base fluid (i.e., nanofluids) is an effective strategy to achieve a higher thermal conductivity of a fluid. In a common nanofluid, the suspended nanoparticles...

2013 ◽  
Vol 757 ◽  
pp. 111-137 ◽  
Author(s):  
Amit Sobti ◽  
R.K. Wanchoo

Enhanced thermal conductivity of nanofluids compared to that of the base fluid has received attention of many researchers in the last one decade. Experimental data on thermal conductivity of nanofluids using varied nanoparticles in the size range 10-100 nm have been reported. However, there is lot of variance in the data and needs critical analysis. Many models have been proposed by various research groups for predicting the thermal conductivity of nanofluids. Due to complexity of various parameters involved (size, % volume fraction, specific surface area and the type of nano particles, pH of nano fluid, thermal conductivity and viscosity of base fluid) no single model can be used for predicting the thermal conductivity of nanofluids. Inconsistent and conflicting results are reported on the enhanced thermal conductivity of nanofluids. Further, insufficient understanding and inconclusive mechanism behind enhanced thermal conductivity requires further attempt to work in this field. This article critically reviews the available literature on thermal conductivity of nanofluids.


2017 ◽  
Vol 261 ◽  
pp. 121-126 ◽  
Author(s):  
Alina Adriana Minea ◽  
Madalina Georgiana Moldoveanu ◽  
Oana Dodun

Ionanofluids are a very new class of nanofluids having ionic liquids as the base fluid. Thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) are part of studying a new class of fluids for heat transfer. NEILs are formed by dispersing different volume fractions of nanoparticles in a base ionic liquid. In this article, only the thermal conductivity enhancement was considered for comparison of the different ionanofluids. NEILs show enhanced thermal conductivity compared to the base ILs. Maximum thermal conductivity enhancement was observed by adding 1 % MWCNT to [C4mim][(CF3SO2)2N] ionic liquid. However, if 0.05% MWCNT are added to [(C6)3PC14)][NTf2] no enhancement in thermal conductivity was noticed.


2019 ◽  
Vol 16 (31) ◽  
pp. 365-380
Author(s):  
P. A. C. ROCHA ◽  
R. F. de M. SANTOS ◽  
R. J. P. LIMA ◽  
M. E. V. da SILVA

Research in heat transfer using suspensions of nanometer-sized solid particles in liquids as the base fluids have started in the last two decades. The nanofluid is a colloidal mixture composed of a base fluid and nanoparticles. The nanoparticles may be metallic, nonmetallic, ceramic, oxide and of several other categories, being the nanocomposites one of the areas of greater growth in the engineering of materials. Nanofluids are part of a new generation of high potential fluids in heat transfer applications due to their higher thermal conductivity. Most recent studies on nanofluids indicate that suspended nanoparticles markedly alter the properties and heat transfer characteristics of the suspension. This article summarizes some of the recent advances in the study of nanofluids and nanoparticles, such as their preparation methods, their thermophysical properties and finally presents various fields of applications such as solar thermal, mechanical, automotive, electronic, medical, biomedical etc.


2016 ◽  
Vol 30 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Deepti Chauhan ◽  
Nilima Singhvi

Nanofluids, which are formed by suspending nanoparticles into conventional fluids, exhibit anomalously high thermal conductivity. Renovated Maxwell model was developed by Choi in which the presence of very thin nanolayer surrounding the solid particles was considered, which can measurably increase the effective thermal conductivity of nanofluids. A new model is proposed by introducing a fitting parameter χ in the renovated Maxwell model, which accounts for nanolayer, nonuniform sizes of filler nanoparticles together with aggregation. The model shows that the effective thermal conductivity of nanofluids is a function of the thickness of the nanolayer, the nanoparticle size, the nanoparticle volume fraction and the thermal conductivities of suspended nanoparticles, nanolayer and base fluid. The validation of the model is done by applying the results obtained by the experiments on nanofluids, other theoretical models, and artificial neural network technique. The uncertainty of the present measurements is estimated to be within 5% for the effective thermal conductivity.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3610
Author(s):  
Norhafezaidi Mat Saman ◽  
Izzah Hazirah Zakaria ◽  
Mohd Hafizi Ahmad ◽  
Zulkurnain Abdul-Malek

Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document