scholarly journals Imaging the oxygen wave with single bioluminescent bacteria

2021 ◽  
Author(s):  
Yaohua Li ◽  
Wei Wang ◽  
You-Peng Chen ◽  
Tianhua Zheng ◽  
Hua Cui ◽  
...  

We developed a capability of a monolayer of bioluminescent (BL) bacteria for spatiotemporally visualizing the heterogeneous distribution and dynamic evolution of interfacial oxygen concentration, resulting in the discovery of spontaneous...

2009 ◽  
Vol 69 (1) ◽  
pp. 1-18 ◽  
Author(s):  
LP. Sartori ◽  
MG. Nogueira ◽  
R. Henry ◽  
EM. Moretto

During three consecutive years, monthly samples of zooplankton were taken in the lacustrine (dam) zone of Jurumirim (São Paulo, Brazil). The seasonal effect on basic limnological features (thermal regime, oxygen distribution, phytoplankton biomass, etc.) was also examined. The influence of the seasonality on the fluctuation of the zooplankton composition and abundance was not clearly detected (low degree of recurrent patterns). Rotifers (32 taxa) were the most abundant organisms during almost the entire study period with some seasonal alternations in the maximum abundance peaks of the main taxa (Conochilus unicornis, Keratella americana, K. cochlearis and Hexarthra spp.), except for Polyarthra (mainly P. vulgaris). Only occasionally copepods were numerically dominant. Higher copepod abundance was positively associated to periods of increase in the water retention time. Among the Copepoda (10 taxa) the calanoids (mainly Notodiaptomus iheringi) were more abundant, especially in warmer periods. Conversely, cyclopoids had higher abundance in autumn and winter. The species Thermocyclops minutus and T. decipiens co-occurred, but the first attained higher abundance. Some evidence of co-existence strategies between both species are considered. Cladocera (17 taxa) was never numerically dominant and the main taxa (Bosmina spp., Ceriodaphnia spp. and Diaphanosoma spp.) occurred almost the whole study period and did not present a seasonal pattern of fluctuation. Diaphanosoma (mainly D. birgei) attained the highest abundance among cladocerans. Most organisms were always found at the surface, but they also occupy the whole water column, even in periods of stratified conditions and low oxygen concentration in the bottom layers. Among the main zooplanktonic taxa, only Hexarthra avoids deep layers. An exceptionally high concentration of Copepoda nauplii on the surface was influenced by low transparency, high concentration of phytoplankton at this layer and low oxygen concentration at the bottom. In periods of higher retention timevariability there was a more heterogeneous distribution of the zooplankton in the water column. The increase in the retention time seems also to favor the copepod development. Finally, some inter-decade changes are considered on the basis of zooplankton assemblage structure observations.


1989 ◽  
Vol 4 (1) ◽  
pp. 156-162 ◽  
Author(s):  
Y. Pauleau ◽  
F. C. Dassapa ◽  
Ph. Lami ◽  
J. C. Oberlin ◽  
F. Romagna

Tungsten films were deposited on Si substrates by the H2 or Si reduction of WF6 under various experimental conditions. The composition and structure of as-deposited samples as well as the interfacial reactions and interdiffusion of elements in annealed samples were characterized by nuclear reaction analyses, sheet resistance measurements, x-ray diffraction technique, and Rutherford backscattering spectroscopy. The amount of oxygen at W–Si interfaces was found to be dependent on the cleaning treatment of the Si surface used before WF6–Si interaction. The interfacial oxygen concentration was less than 1 ⊠ 1014 at./cm2 (detection limit of the nuclear reaction analysis) and (2–7) ⊠ 1016 at./cm2 using an HF cleaning and the RCA treatment, respectively. For W/Si samples, the formation temperature of WSi2 was dependent on the dopant level in the Si substrates and the oxygen concentration at W–Si interfaces. The silicidation reaction occurred at 625 °C in “oxygen free” W/Si structures while for structures containing interfacial oxygen atoms, this reaction occurred above 800 °C. In Al/W/Si structures, the intermetallic compound, WAl12, was formed by annealing at 450 °C for 90 min. Furthermore, the formation of WSi2 was observed in structures annealed at a temperature in the range of 550 °C–600 °C regardless of the oxygen concentration at the W–Si interface. A model to explain the effect of interfacial oxygen atoms on the silicidation reaction and the influence of the Al overlayer on the thermal stability of Al/W/Si structures is proposed and discussed in this paper.


2013 ◽  
Vol 29 (2) ◽  
pp. 267-269
Author(s):  
Satoshi SASAKI ◽  
Mika MOCHIZUKI ◽  
Makoto IGARASHI

Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


2001 ◽  
Vol 13 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Iris Hack ◽  
Moritz Frech ◽  
Oliver Dick ◽  
Leo Peichl ◽  
Johann Helmut Brandstatter

2002 ◽  
Vol 716 ◽  
Author(s):  
D. Jacques ◽  
S. Petitdidier ◽  
J.L. Regolini ◽  
K. Barla

AbstractOxide/Nitride dielectric stack is widely used as the standard dielectric for DRAM capacitors. The influence of the chemical cleaning prior to the stack formation has been studied in this work. As a result, morphological data such as stack surface roughness (Atomic Force Microscopy) and silicon nitride (SiN) incubation time for growth are comparable for all the studied cases on <Si>. However, Tof-SIMS exhibits different oxygen content at the Si/stack interface following the different chemical treatments. Electrical measurements show comparable C-V and I-V results, for the same Equivalent Oxide Thickness (same capacitance at strong accumulation i.e.-3V) while the different studied interfaces bring different interface states density with lower values for higher interfacial oxygen content. For DRAM applications, a clear improvement in electrical characteristics is obtained under low interfacial oxygen content conditions. Results are compared in embedded-DRAM cells for which we developed an industrially compatible dielectric deposition sequence to obtain minimum leakage current with maximum specific capacitance and no particular linking constraints.


Sign in / Sign up

Export Citation Format

Share Document