High-capacity polymer electrodes for potassium batteries

Author(s):  
Vahid Ramezankhani ◽  
Igor K. Yakuschenko ◽  
Sergey G. Vasil'ev ◽  
Tatiana A. Savinykh ◽  
Alexander V. Mumyatov ◽  
...  

We synthesized and investigated a series of six promising polymeric electrode materials, which incorporate multiple redox-active groups enabling high specific discharge capacity and energy density in potassium half-cells. All investigated...

2021 ◽  
Author(s):  
Ying Hua ◽  
Yuanzhu Huang ◽  
Yujie Wang ◽  
Ya Du ◽  
Haishen Yang

Due to their readily availability and high capacity, redox-active small organic molecules have been considered as one of the most promising electrode materials. However, their facile dissolution into organic electrolytes...


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 680
Author(s):  
Jianyang Jiang ◽  
Xiong Xiong Liu ◽  
Jiayu Han ◽  
Ke Hu ◽  
Jun Song Chen

Transition metal hydroxides have attracted a lot of attention as the electrode materials for supercapacitors owing to their relatively high theoretical capacity, low cost, and facile preparation methods. However, their low intrinsic conductivity deteriorates their high-rate performance and cycling stability. Here, self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 (CuO@NiZn) composite nanowire arrays were successfully grown on copper foam. The CuO nanowire backbone provided enhanced structural stability and a highly efficient electron-conducting pathway from the active hydroxide nanosheets to the current collector. The resulting CuO@NiZn as the battery-type electrode for supercapacitor application delivered a high capacity of 306.2 mAh g−1 at a current density of 0.8 A g−1 and a very stable capacity of 195.1 mAh g−1 at 4 A g−1 for 10,000 charge–discharge cycles. Furthermore, a quasi-solid-state hybrid supercapacitor (qss HSC) was assembled with active carbon, exhibiting 125.3 mAh g−1 at 0.8 A g−1 and a capacity of 41.6 mAh g−1 at 4 A g−1 for 5000 charge–discharge cycles. Furthermore, the qss HSC was able to deliver a high energy density of about 116.0 Wh kg−1. Even at the highest power density of 7.8 kW kg−1, an energy density of 20.5 Wh kg−1 could still be obtained. Finally, 14 red light-emitting diodes were lit up by a single qss HSC at different bending states, showing good potential for flexible energy storage applications.


Author(s):  
Yang Huang ◽  
Long Liu ◽  
Min Gao

The search for new materials that could improve the energy density of Li-ion batteries (LIB) is one of today’s most challenging issues. Recently, cation-disordered lithium-excess metal oxides have emerged as a promising new class of cathode materials for LIB, due to their high reversible capacities and nice structural stability. However, a full structural model of the Li-transition metal (TM) sharing sublattice and the origin of short range ordering (SRO) of cation ions requires further investigation. In this work, we put forward a Monte Carlo strategy of building a cation-disordered rocksalt material supercell model. The cation ions of Li1.0Ti0.5Ni0.5O2 (LTNO) are placed at the FCC sublattice sites with the constraint of Pauling’s electroneutrality rule, instead of a random way. This constraint causes the Li-Ti and Ni-Ni clustering (the cation short range ordering). Based on this model, we discussed the relationship between the short range ordering, the local distorting, the theoretic capacity and the order-disorder strengths. A unified understanding of these factors in cation-disordered materials may enable a better design of disordered-electrode materials with high capacity and high energy density.


2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2020 ◽  
Vol 117 (6) ◽  
pp. 2815-2823 ◽  
Author(s):  
Junnan Hao ◽  
Fuhua Yang ◽  
Shilin Zhang ◽  
Hanna He ◽  
Guanglin Xia ◽  
...  

Existing lithium-ion battery technology is struggling to meet our increasing requirements for high energy density, long lifetime, and low-cost energy storage. Here, a hybrid electrode design is developed by a straightforward reengineering of commercial electrode materials, which has revolutionized the “rocking chair” mechanism by unlocking the role of anions in the electrolyte. Our proof-of-concept hybrid LiFePO4 (LFP)/graphite electrode works with a staged deintercalation/intercalation mechanism of Li+ cations and PF6− anions in a broadened voltage range, which was thoroughly studied by ex situ X-ray diffraction, ex situ Raman spectroscopy, and operando neutron powder diffraction. Introducing graphite into the hybrid electrode accelerates its conductivity, facilitating the rapid extraction/insertion of Li+ from/into the LFP phase in 2.5 to 4.0 V. This charge/discharge process, in turn, triggers the in situ formation of the cathode/electrolyte interphase (CEI) layer, reinforcing the structural integrity of the whole electrode at high voltage. Consequently, this hybrid LFP/graphite-20% electrode displays a high capacity and long-term cycling stability over 3,500 cycles at 10 C, superior to LFP and graphite cathodes. Importantly, the broadened voltage range and high capacity of the hybrid electrode enhance its energy density, which is leveraged further in a full-cell configuration.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Masaru Yao ◽  
Noboru Taguchi ◽  
Hisanori Ando ◽  
Nobuhiko Takeichi ◽  
Tetsu Kiyobayashi

Abstract Replacing the scarce metal-based positive electrode materials currently used in rechargeable lithium ion batteries with organic compounds helps address environmental issues and might enhance gravimetric electrochemical capacity. The challenge has been to find organic materials with both high capacity and long-cycle life. Here, we study the naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) skeleton as a high capacity candidate electrode for lithium-ion batteries, showing a multielectron-transfer type redox reaction. We also use electron energy-loss spectroscopy to reveal the reaction stoichiometry during charge/discharge processes. While the lithium salt of naphthazarin itself helped deliver a high initial capacity, its cycle-life was not satisfactory. Instead, a newly synthesized naphthazarin-dimer shows a lengthened cycle-life without sacrificing the initial high capacity of 416 mAh g−1 and energy density of 1.1 Wh g−1.


2015 ◽  
Vol 18 (2) ◽  
pp. 087-090 ◽  
Author(s):  
Zahra Padashbarmchi ◽  
Amir Hossein Hamidian ◽  
Owen Noonan ◽  
Nematolah Khorasani ◽  
Mahmood Kazemzad

A variety of materials have been investigated as potential electrode materials for LIBs. Electrodes including Fe, Co, Ni or Cu have more Lithium ion storage capacity (more than 600 mAh/g) comparing to graphite (about 372 mAh/g). Recently, much effort has been focused toward achieving 3-dimensional hollow spheres with high surface area and porous for better capacity performance. In this study a simple spray drying approach has been introduced to synthesize porous CuO and Co3O4 microspheres. The results revealed that uniform structures of the nanoparticles microspheres were achieved. Then their cyclic performance were analyzed and compared to their commercial counterparts. The porous CuO microspheres and Co3O4 microspheres exhibited high capacity retention (86.2% of the discharge capacity of the second cycle after 60 cycles) and (89.8% of the discharge capacity of the second cycle after 40 cycles) at a current density of 400 mA/g, respectively. The excellent electrochemical properties could be attributed to their unique porous structures. The electrochemical results showed that microspheric electrode materials are able to manifest superior electrochemical properties compared to their commercial counterparts.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 662 ◽  
Author(s):  
Arjunan Ponnaiah ◽  
Subadevi Rengapillai ◽  
Diwakar Karuppiah ◽  
Sivakumar Marimuthu ◽  
Wei-Ren Liu ◽  
...  

A prismatic type layered Na2/3Ni1/3Mn2/3O2 cathode material for a sodium ion battery is prepared via two different methods viz., the solid state and sol–gel method with dissimilar surface morphology and a single phase crystal structure. It shows tremendous electrochemical chattels when studied as a cathode for a sodium-ion battery of an initial specific discharge capacity of 244 mAh g−1 with decent columbic efficiency of 98% up to 250 cycles, between the voltage range from 1.8 to 4.5 V (Na+/Na) at 0.1 C under room temperature. It is much higher than its theoretical value of 173 mAh g−1 and also than in the earlier reports (228 m Ah g−1). The full cell containing this material exhibits 800 mAh g−1 at 0.1 C and withstands until 1000 cycles with the discharge capacity of 164 mAh g−1. The surpassing capacity was expected by the anionic (oxygen) redox process, which elucidates the higher capacity based on the charge compensation phenomenon.


2021 ◽  
Author(s):  
Weihua Tang ◽  
Xinlei Wang ◽  
Jie Zhou

New generation energy storage devices call for electrodes with high capacity, high cycling performance and environmental benignity. Polymer electrode materials (PEMs) are attractive for their abundant structural diversity and tunability...


Sign in / Sign up

Export Citation Format

Share Document