One-Step Electrochemical Deposition of Antifouling Polymers with Pyrogallol for Biosensing Application

Author(s):  
Shang-Lin Yeh ◽  
Piyush Deval ◽  
Jhih-Guang Wu ◽  
Shyh-Chyang Luo ◽  
Wei-Bor Tsai

Electrochemical techniques are highly sensitive and label-free sensing methods for the detection of various biomarkers, toxins, or pathogens. An ideal sensing element should be electroconductive, nonfouling, and readily available for...

Author(s):  
I-Jiuan Bau ◽  
Gou-Jen Wang

The group 2 allergen, Der p2, has been reported to activate innate toll-like receptors (TLRs) on respiratory epithelial cells and thus aggravate respiratory diseases. In this study, a high sensitive nanobiosensor based on a 3D sensing element that has uniformly deposited gold nanoparticles for the detection of the dust mite antigen Der p2 is proposed. The barrier layer of an anodic aluminum oxide (AAO) film is used as the template in this highly sensitive nanobiosensor fabricated with a reducing agent and stabilizer-free method. Electrochemical deposition is utilized to synthesize uniformly distributed gold nanoparticles on the surface of the barrier layer. The size and the distribution density of the nanoparticles can be well controlled by the potential applied during electrochemical deposition. Following this procedure, monoclonal antibodies were immobilized against the dust mite antigen Der p2 by the gold nanoparticles through the 11-MUA (11-mercaptoundecanoic acid), EDC (1-Ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide)/NHS (N-hydroxysuccinimide) self-assembled monolayer approach. The proposed nanobiosensor was successfully used to examine the Der p2 down to a concentration of 1pg/mL through the electrochemical impedance spectroscopy analysis. The high sensitivity of the proposed 3D nanobiosensor can be attributed to the high intensity and uniformity of the Au nanoparticles on the sensor. The proposed nanobiosensor would be useful for the fast detection of rare molecules in a solution.


2020 ◽  
Vol 3 (11) ◽  
pp. 7620-7630 ◽  
Author(s):  
Arumugam Sangili ◽  
Thangapandi Kalyani ◽  
Shen-Ming Chen ◽  
Amalesh Nanda ◽  
Saikat Kumar Jana

2017 ◽  
Vol 9 (29) ◽  
pp. 4275-4281 ◽  
Author(s):  
Zhongming Huang ◽  
Jie Yang ◽  
Lin Zhang ◽  
Xin Geng ◽  
Jia Ge ◽  
...  

A label-free and sensitive method for glucose detection is proposed based on the color change of MnO2 nanosheet colloidal suspension.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 147
Author(s):  
Kristina A. Malsagova ◽  
Tatyana O. Pleshakova ◽  
Vladimir P. Popov ◽  
Igor N. Kupriyanov ◽  
Rafael A. Galiullin ◽  
...  

Gas-phase etching and optical lithography were employed for the fabrication of a silicon nanoribbon chip (Si-NR chip). The quality of the so-fabricated silicon nanoribbons (Si-NRs) was monitored by optical Raman scattering spectroscopy. It was demonstrated that the structures of the Si-NRs were virtually defect-free, meaning they could be used for highly sensitive detection of biological macromolecules. The Si-NR chips were then used for the highly sensitive nanoelectronics detection of DNA oligonucleotides (oDNAs), which represent synthetic analogs of 106a-5p microRNA (miR-106a-5p), associated with the development of autism spectrum disorders in children. The specificity of the analysis was attained by the sensitization of the Si-NR chip sur-face by covalent immobilization of oDNA probes, whose nucleotide sequence was complementary to the known sequence of miR-106a-5p. The use of the Si-NR chip was demonstrated to al-low for the rapid label-free real-time detection of oDNA at ultra-low (~10−17 M) concentrations.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Zhang ◽  
Chunyang Dai ◽  
Huiyan Wang ◽  
Yong Gao ◽  
Tuantuan Li ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30 to 60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. Method In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. Result The limit of detection (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI: 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


2021 ◽  
pp. 338645
Author(s):  
Dagang Jiang ◽  
Yafei Tian ◽  
Yujiao Zhang ◽  
Xueyun Lu ◽  
Dan Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document