3D Printing of Biphasic Inks: Beyond Single-Scale Architectural Control

Author(s):  
Gianluca Cidonio ◽  
Marco Costantini ◽  
Filippo Pierini ◽  
Chiara Scognamiglio ◽  
Tarun Agarwal ◽  
...  

To date, Additive Manufacturing (AM) has come to the fore as a major disruptive technology embodying two main research lines - developing increasingly sophisticated printing technologies and new processable materials....

2019 ◽  
Vol 34 (5) ◽  
pp. 1093-1105 ◽  
Author(s):  
Christina Öberg ◽  
Tawfiq Shams

Purpose With the overarching idea of disruptive technology and its effects on business, this paper focuses on how companies strategically consider meeting the challenge of a disruptive technology such as additive manufacturing. The purpose of this paper is to describe and discuss changes in positions and roles related to the implementation of a disruptive technology. Design/methodology/approach Additive manufacturing could be expected to have different consequences for parties based on their current supply chain positions. The paper therefore investigates companies’ strategies related to various supply chain positions and does so by departing from a position and role point of view. Three business cases related to metal 3D printing - illustrating sub-suppliers, manufacturers and logistics firms - describe as many strategies. Data for the cases were collected through meetings, interviews, seminars and secondary data focusing on both current business activities related to additive manufacturing and scenarios for the future. Findings The companies attempted to defend their current positions, leading to new roles for them. This disconnects the change of roles from that of positions. The changed roles indicate that all parties, regardless of supply chain positions, would move into competing producing roles, thereby indicating how a disruptive technology may disrupt network structures based on companies’ attempts to defend their positions. Originality/value The paper contributes to previous research by reporting a disconnect between positions and roles among firms when disruption takes place. The paper further denotes how the investigated firms largely disregarded network consequences at the disruptive stage, caused by the introduction of additive manufacturing. The paper also contributes to research on additive manufacturing by including a business dimension and linking this to positions and roles.


2020 ◽  
Vol 3 (7) ◽  
pp. 197-210
Author(s):  
Franklin Epiphanio Gomes de Almeida

The present study is a horizon scanning report based on the British model Sigma Scan. It explores possible future issues and trends in 3D printing and its potential impact on society, particularly with regard to new security threats that its spread is expected to cause. This exercise allows for an examination based on the best predictions of how the future of this disruptive and, at the same time, enabling technology is likely to be, in order to better understand the uncertainties that its development will bring. This report addresses the potential implications of the development of 3D printing, in particular for crimes, the likely early indicators of the development of this technology, the simultaneous developments that can serve as inhibitors and drivers, the potential crime preventers and promoters, and the evidence that indicates the possibility of the predicted events. Keywords: 3D printing, additive manufacturing, disruptive technology, enabling technology, security risks.


2019 ◽  
Vol 11 (13) ◽  
pp. 1802-1810 ◽  
Author(s):  
Eran Gal-Or ◽  
Yaniv Gershoni ◽  
Gianmario Scotti ◽  
Sofia M. E. Nilsson ◽  
Jukka Saarinen ◽  
...  

Additive manufacturing (3D printing) is a disruptive technology that is changing production systems globally.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


2021 ◽  
Author(s):  
Alexey Pustovarenko ◽  
Beatriz Seoane ◽  
Edy Abou-Hamad ◽  
Helen E King ◽  
Bert Weckhuysen ◽  
...  

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest...


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 336
Author(s):  
Sven Pantermehl ◽  
Steffen Emmert ◽  
Aenne Foth ◽  
Niels Grabow ◽  
Said Alkildani ◽  
...  

The use of additive manufacturing (AM) technologies is a relatively young research area in modern medicine. This technology offers a fast and effective way of producing implants, tissues, or entire organs individually adapted to the needs of a patient. Today, a large number of different 3D printing technologies with individual application areas are available. This review is intended to provide a general overview of these various printing technologies and their function for medical use. For this purpose, the design and functionality of the different applications are presented and their individual strengths and weaknesses are explained. Where possible, previous studies using the respective technologies in the field of tissue engineering are briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document