Dual histone reader ZMYND8 inhibits cancer cell invasion by positively regulating epithelial genes

2017 ◽  
Vol 474 (11) ◽  
pp. 1919-1934 ◽  
Author(s):  
Moitri Basu ◽  
Isha Sengupta ◽  
Md Wasim Khan ◽  
Dushyant Kumar Srivastava ◽  
Partha Chakrabarti ◽  
...  

Enhanced migratory potential and invasiveness of cancer cells contribute crucially to cancer progression. These phenotypes are achieved by precise alteration of invasion-associated genes through local epigenetic modifications which are recognized by a class of proteins termed a chromatin reader. ZMYND8 [zinc finger MYND (myeloid, Nervy and DEAF-1)-type containing 8], a key component of the transcription regulatory network, has recently been shown to be a novel reader of H3.1K36Me2/H4K16Ac marks. Through differential gene expression analysis upon silencing this chromatin reader, we identified a subset of genes involved in cell proliferation and invasion/migration regulated by ZMYND8. Detailed analysis uncovered its antiproliferative activity through BrdU incorporation, alteration in the expression of proliferation markers, and cell cycle regulating genes and cell viability assays. In addition, performing wound healing and invasion/migration assays, its anti-invasive nature is evident. Interestingly, epithelial–mesenchymal transition (EMT), a key mechanism of cellular invasion, is regulated by ZMYND8 where we identified its selective enrichment on promoters of CLDN1/CDH1 genes, rich in H3K36Me2/H4K16Ac marks, leading to their up-regulation. Thus, the presence of ZMYND8 could be implicated in maintaining the epithelial phenotype of cells. Furthermore, syngeneic mice, injected with ZMYND8-overexpressed invasive breast cancer cells, showed reduction in tumor volume and weight. In concert with this, we observed a significant down-regulation of ZMYND8 in invasive ductal and lobular breast cancer tissues compared with normal tissue. Taken together, our study elucidates a novel function of ZMYND8 in regulating EMT and invasion of cancer cells, possibly through its chromatin reader function.

2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ziqian Yan ◽  
Zhimei Sheng ◽  
Yuanhang Zheng ◽  
Ruijun Feng ◽  
Qinpei Xiao ◽  
...  

AbstractStudies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


2020 ◽  
Vol 98 (3) ◽  
pp. 426-433 ◽  
Author(s):  
Fenglin Cai ◽  
Luhong Chen ◽  
Yuting Sun ◽  
Chunlan He ◽  
Deyuan Fu ◽  
...  

The aberrant expression of microRNAs (miRNAs) is involved in the initiation and progression of human cancers. In our study, we found that miR-539 was down-regulated in breast cancer tissues and cell lines. Decreased expression of miR-539 was significantly associated with lymph node metastasis in patients with breast cancer. Overexpression of miR-539 inhibited the proliferation and promoted apoptosis of breast cancer cells. Moreover, highly expressed miR-539 significantly suppressed the epithelial–mesenchymal transition (EMT) and sensitized cells to cisplatin treatment. Mechanistically, miR-539 was found to target the specificity protein 1 (SP1) and down-regulated the expression of SP1 in breast cancer cells. Knockdown of miR-539 consistently increased the expression of SP1. The expression of miR-539 in breast cancer tissues was negatively correlated with the expression of SP1. Restoration of SP1 significantly attenuated the inhibitory effect of miR-539 on the proliferation of breast cancer cells. Taken together, our results indicate that miR-539 has a tumor suppressive role in breast cancer via targeting SP1, suggesting miR-539 as a promising target for the diagnosis of breast cancer.


2021 ◽  
Vol 10 ◽  
Author(s):  
Chengqin Wang ◽  
Runze Zhang ◽  
Xiao Wang ◽  
Yan Zheng ◽  
Huiqing Jia ◽  
...  

Breast cancer is the most common malignant tumors in women. Kinesin family member 3B (KIF3B) is a critical regulator in mitotic progression. The objective of this study was to explore the expression, regulation, and mechanism of KIF3B in 103 cases of breast cancer tissues, 35 metastatic lymph nodes and breast cancer cell lines, including MDA-MB-231, MDA-MB-453, T47D, and MCF-7. The results showed that KIF3B expression was up-regulated in breast cancer tissues and cell lines, and the expression level was correlated with tumor recurrence and lymph node metastasis, while knockdown of KIF3B suppressed cell proliferation, migration, and invasion both in vivo and in vitro. In addition, UALCAN analysis showed that KIF3B expression in breast cancer is increased, and the high expression of KIF3B in breast cancer is associated with poor prognosis. Furthermore, we found that silencing of KIF3B decreased the expression of Dvl2, phospho-GSK-3β, total and nucleus β-catenin, then subsequent down-regulation of Wnt/β-catenin signaling target genes such as CyclinD1, C-myc, MMP-2, MMP-7 and MMP-9 in breast cancer cells. In addition, KIF3B depletion inhibited epithelial mesenchymal transition (EMT) in breast cancer cells. Taken together, our results revealed that KIF3B is up-regulated in breast cancer which is potentially involved in breast cancer progression and metastasis. Silencing KIF3B might suppress the Wnt/β-catenin signaling pathway and EMT in breast cancer cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tytti Kärki ◽  
Eeva Kaisa Rajakylä ◽  
Anna Acheva ◽  
Sari Tojkander

Abstract Epithelial integrity is lost upon cancer progression as cancer cells detach from the primary tumor site and start to invade to the surrounding tissues. Invasive cancers of epithelial origin often express altered levels of TRP-family cation channels. Upregulation of TRPV6 Ca2+-channel has been associated with a number of human malignancies and its high expression in breast cancer has been linked to both proliferation and invasive disease. The mechanisms behind the potential of TRPV6 to induce invasive progression have, however, not been well elucidated. Here we show that TRPV6 is connected to both E-cadherin-based adherens junctions and intracellular cytoskeletal structures. Loss of TRPV6 from normal mammary epithelial cells led to disruption of epithelial integrity and abnormal 3D-mammo sphere morphology. Furthermore, expression level of TRPV6 was tightly linked to the levels of common EMT markers, suggesting that TRPV6 may have a role in the mesenchymal invasion of breast cancer cells. Thus, either too low or too high TRPV6 levels compromise homeostasis of the mammary epithelial sheets and may promote the progression of pathophysiological conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hui Xiao ◽  
Longxiao Zhang ◽  
Yuan Chen ◽  
Chengjun Zhou ◽  
Xiao Wang ◽  
...  

Breast cancer is the leading cause of females characterized by high invasive potential. It is necessary to explore the underlying mechanism of breast cancer metastases and to find specific therapeutic targets. PKM2 is considered a new biomarker of cancer with upregulated expression in tumor tissue. PKM2 participates in the cancer-specific Warburg effect to regulate fast glucose intake consumption. Besides, PKM2 also contributes to cancer progression, especially tumor metastasis. In this study, we showed that PKM2 is upregulated in breast cancer tissues and the upregulating of PKM2 in breast cancer correlates with poor prognosis. PKM2 can regulate tumor progression by promoting tumor cell viability and mobility. Furthermore, overexpression of PKM2 can promote EMT to encourage tumor metastasis. These findings indicate PKM2 is a potentially useful diagnostic biomarker and therapeutic target in breast cancer.


2020 ◽  
Vol 3 (7) ◽  
pp. e202000683 ◽  
Author(s):  
Ji Hye Yang ◽  
Nam Hee Kim ◽  
Jun Seop Yun ◽  
Eunae Sandra Cho ◽  
Yong Hoon Cha ◽  
...  

Despite the importance of mitochondrial fatty acid oxidation (FAO) in cancer metabolism, the biological mechanisms responsible for the FAO in cancer and therapeutic intervention based on catabolic metabolism are not well defined. In this study, we observe that Snail (SNAI1), a key transcriptional repressor of epithelial–mesenchymal transition, enhances catabolic FAO, allowing pro-survival of breast cancer cells in a starved environment. Mechanistically, Snail suppresses mitochondrial ACC2 (ACACB) by binding to a series of E-boxes located in its proximal promoter, resulting in decreased malonyl-CoA level. Malonyl-CoA being a well-known endogenous inhibitor of fatty acid transporter carnitine palmitoyltransferase 1 (CPT1), the suppression of ACC2 by Snail activates CPT1-dependent FAO, generating ATP and decreasing NADPH consumption. Importantly, combinatorial pharmacologic inhibition of pentose phosphate pathway and FAO with clinically available drugs efficiently reverts Snail-mediated metabolic reprogramming and suppresses in vivo metastatic progression of breast cancer cells. Our observations provide not only a mechanistic link between epithelial–mesenchymal transition and catabolic rewiring but also a novel catabolism-based therapeutic approach for inhibition of cancer progression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qian Xu ◽  
Qianqian Zhang ◽  
Mengli Dong ◽  
Yuan Yu

Abstract Background Previous studies had shown that microRNA-638 (miR-638) exhibited different effects in malignant tumors. Moreover, the function of miR-638 has not been reported in breast cancer. Hence, we designed this research to explore the function of miR-638 in breast cancer. Methods Firstly, miR-638 expressions were measured in breast cancer tissues via RT-qPCR. Protein expressions were detected through immunocytochemical (IHC) assay and western blot analysis. Then, Cell Counting Kit-8 (CCK-8) assay and Transwell assay were conducted to observe proliferation and motility of the cells. Dual luciferase assay was performed to confirm the binding site between miR-638 and Homeobox protein Hox-A9 (HOXA9). Results Reduced expression of miR-638 was detected in breast cancer. And low miR-638 expression was related to poor prognosis in patients with breast cancer. Functionally, the viability, migration, and invasion of the breast cancer cells were suppressed by miR-638 overexpression. Furthermore, miR-638 can directly bind to HOXA9, and increased expression of HOXA9 was also detected in breast cancer. In particular, HOXA9 upregulation can impair anti-tumor effect of miR-638 in breast cancer, and miR-638 can hinder the Wnt/β-cadherin pathway and epithelial-mesenchymal transition (EMT) in breast cancer. Conclusion miR-638 inhibits breast cancer progression through binding to HOXA9.


Author(s):  
Nenad Markovic ◽  
Ana Lukovic ◽  
Nebojsa Arsenijevic ◽  
Srdjan Ninkovic ◽  
Biljana Ljujic

Abstract Breast cancer is not only a mass of genetically abnormal tissue in the breast. This is a well-organized system of a complex heterogeneous tissue. Cancer cells produce regulatory signals that stimulate stromal cells to proliferate and migrate; then, stromal elements respond to these signals by releasing components necessary for tumor development that provide structural support, vasculature, and extracellular matrices. Developing tumors can mobilize a variety of cell types from both local and distant niches via secret chemical factors derived from cancer cells themselves or neighboring cells disrupted by growing neoplasm, such as fibroblasts, immune inflammatory cells, and endothelial cells. CSCs are a group of very few cells that are tumorigenic (able to form tumors) and are defined as those cells within a tumor that can self-renew and lead to tumorigenesis. BCSCs represent a small population of cells that have stem cell characteristics and are related to breast cancer. There are different theories about the origin of BCSCs. BCSCs are responsible for breast carcinoma metastasis. Usually, there is a metastatic spread to the bones, and rarely to the lungs and liver. A phenomenon that allows BCSCs to make the transition from epithelial to mesenchymal expression and thus avoid the effect of cytotoxic agents is the epithelial-mesenchymal transition (EMT). During this process, cells change their molecular characteristics in terms of loss of epithelial characteristics taking the mesenchymal phenotype. This process plays a key role in the progression, invasion, and metastasis of breast tumors.


Sign in / Sign up

Export Citation Format

Share Document