scholarly journals From print to patient: 3D-printed personalized nerve regeneration

2016 ◽  
Vol 38 (4) ◽  
pp. 28-31 ◽  
Author(s):  
Blake N. Johnson ◽  
Michael C. McAlpine

3D printing is revolutionizing regenerative medicine and accelerating the pace of biological discovery via its ability to interweave materials and components of disparate properties, guided by anatomical digital templates. These capabilities have led to a breakthrough in the customization and personalization of complex biological systems and devices ranging from platform technologies such as organs-on-a-chip, to implantable devices, such as patient-specific scaffolds. Yet, understanding and regenerating the nervous system has historically provided a challenging benchmark for drug therapy, surgical methods and bioengineering strategies. The question we pose is can: 3D printing be utilized to address these scientific standards? In principle, extrusion-based 3D printing should offer the ability to flexibly interweave multiple materials, over various length scales, while incorporating diverse functionalities. This may allow the ability to expand biological design paradigms and develop them into novel personalized device architectures. Indeed, 3D printing appears poised to offer an exciting future in the realization of personalized anatomical nerve pathways and platforms for point-of-care opportunities from print to patient.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Philipp Honigmann ◽  
Neha Sharma ◽  
Ralf Schumacher ◽  
Jasmine Rueegg ◽  
Mathias Haefeli ◽  
...  

Recently, three-dimensional (3D) printing has become increasingly popular in the medical sector for the production of anatomical biomodels, surgical guides, and prosthetics. With the availability of low-cost desktop 3D printers and affordable materials, the in-house or point-of-care manufacturing of biomodels and Class II medical devices has gained considerable attention in personalized medicine. Another projected development in medical 3D printing for personalized treatment is the in-house production of patient-specific implants (PSIs) for partial and total bone replacements made of medical-grade material such as polyetheretherketone (PEEK). We present the first in-hospital 3D printed scaphoid prosthesis using medical-grade PEEK with fused filament fabrication (FFF) 3D printing technology.


2021 ◽  
Vol 22 (16) ◽  
pp. 8521
Author(s):  
Neha Sharma ◽  
Soheila Aghlmandi ◽  
Federico Dalcanale ◽  
Daniel Seiler ◽  
Hans-Florian Zeilhofer ◽  
...  

Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today’s craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.


The Analyst ◽  
2021 ◽  
Author(s):  
Diwakar M. Awate ◽  
Cicero C. Pola ◽  
Erica Shumaker ◽  
Carmen L Gomes ◽  
Jaime Javier Juarez

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach...


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Symbrachydactyly is a genetical problem occurred to newborn where the newborn experienced underdeveloped or shorten fingers. This condition will limit their normal as even a simple task of holding an item or pushing a button. A device is needed to help them gain a better life. The aim of this project is to fabricate a customized prosthesis hand using 3D printing technology at minimum cost. The proposed prosthetic was not embedded with any electrical component. The patient can only use the wrist to control the prosthetic part which is the prosthetic fingers. The prosthetic hand was also being developed with the patient specific features, which the initial design stage was adapted from a person’s hand geometry using a 3D scanner. Next the model of the prosthesis was analyzed computationally to predict the performance of the product. Different material properties are considered in the analysis to present Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) materials. Then, the prosthesis was fabricated using the 3D printing. The results suggested that PLA material indicated better findings and further be fabricated.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1577
Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.


2020 ◽  
Vol 26 (8) ◽  
pp. 1345-1361 ◽  
Author(s):  
Yee Ling Yap ◽  
Swee Leong Sing ◽  
Wai Yee Yeong

Purpose Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics. Design/methodology/approach The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented. Findings This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics. Originality/value The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.


Sign in / Sign up

Export Citation Format

Share Document