scholarly journals Harnessing the genetic potential of the plant microbiome

2020 ◽  
Vol 42 (4) ◽  
pp. 20-25
Author(s):  
Nicole R. Wang ◽  
Cara H. Haney

Plant-associated microorganisms, such as bacteria and fungi, can grow on and survive in healthy plant tissues, making up the plant microbiome. Members of the plant microbiome can provide benefits to their host, and emerging research suggests that plants can reshape the composition of their microbiomes in response to environmental cues. The plant microbiome collectively acts as a reservoir for genes that may improve plant growth and survival in response to challenges, therefore contributing to the total genetic potential of the plant. Understanding the impact of the plant microbiome has unlocked new strategies for improving crop production, especially as climate change threatens to increase the prevalence of pathogens and stressful growth conditions. Applying microbiome engineering strategies, such as inoculation with plant growth-promoting rhizobacteria (PGPR), and incorporating the microbiome into the breeding process show promise for improving future agricultural crop production.

BIOLOVA ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 96-107
Author(s):  
Elza - Yulistiana ◽  
Hening Widowati ◽  
Agus Sutanto

Increasing agricultural crop production, especially onion, can be done by improving the optimal growing environment for plants. Plant roots can be optimized for the absorption of nutrients and water in the process of photosynthesis. One way that can be used is by applying Plant Growth Promoting Rhizobacteria (PGPR). In addition to increasing the content of micro and macro elements in the soil can also support the growth of leek plants obtained by applying Pineapple Liquid Waste (LCN) made using bacterial isolation and can meet the needs of nutrients in plants. This study aims to determine the effect Plant Growth Promoting Rhizobacteria (PGPR) from Apus (Gigantochola apus) bamboo root and Pineapple Liquid Waste (LCN) fertilizer on the growth of leeks (Allium fistulosum L.), then the results of this study are treated as community information in the form of Leaflets. The method used in this study was an experiment using a Completely Randomized Design (CRD) system consisting of 4x4 factorials with 3 replications. Based on the results of calculations and data analysis, the results show that there is an effect of PGPR and LCN on the growth of scallions on the height and number of tillers per scallion plant family, but there is no influence on pseudo stem circumference and wet weight per scallion plant family, and the results of this study can be used as a source of public information in the form of leaflets with an average percentage included in good eligibility criteria.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 88 ◽  
Author(s):  
Fermín Morales ◽  
María Ancín ◽  
Dorra Fakhet ◽  
Jon González-Torralba ◽  
Angie L. Gámez ◽  
...  

Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1055
Author(s):  
Krishan K. Verma ◽  
Xiu-Peng Song ◽  
Dong-Mei Li ◽  
Munna Singh ◽  
Vishnu D. Rajput ◽  
...  

Abiotic stresses are the major constraints in agricultural crop production across the globe. The use of some plant–microbe interactions are established as an environment friendly way of enhancing crop productivity, and improving plant development and tolerance to abiotic stresses by direct or indirect mechanisms. Silicon (Si) can also stimulate plant growth and mitigate environmental stresses, and it is not detrimental to plants and is devoid of environmental contamination even if applied in excess quantity. In the present review, we elaborate the interactive application of Si and plant growth promoting rhizobacteria (PGPRs) as an ecologically sound practice to increase the plant growth rate in unfavorable situations, in the presence of abiotic stresses. Experiments investigating the combined use of Si and PGPRs on plants to cope with abiotic stresses can be helpful in the future for agricultural sustainability.


2021 ◽  
Author(s):  
Sara I. Zandalinas ◽  
Soham Sengupta ◽  
Felix B. Fritschi ◽  
Rajeev K. Azad ◽  
Rachel Nechushtai ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2019 ◽  
Vol 20 (7) ◽  
pp. 1769 ◽  
Author(s):  
Manoj Kaushal

Drought conditions marked by water deficit impede plant growth thus causing recurrent decline in agricultural productivity. Presently, research efforts are focussed towards harnessing the potential of microbes to enhance crop production during drought. Microbial communities, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) buddy up with plants to boost crop productivity during drought via microbial induced systemic tolerance (MIST). The present review summarizes MIST mechanisms during drought comprised of modulation in phytohormonal profiles, sturdy antioxidant defence, osmotic grapnel, bacterial exopolysaccharides (EPS) or AMF glomalin production, volatile organic compounds (VOCs), expression of fungal aquaporins and stress responsive genes, which alters various physiological processes such as hydraulic conductance, transpiration rate, stomatal conductivity and photosynthesis in host plants. Molecular studies have revealed microbial induced differential expression of various genes such as ERD15 (Early Response to Dehydration 15), RAB18 (ABA-responsive gene) in Arabidopsis, COX1 (regulates energy and carbohydrate metabolism), PKDP (protein kinase), AP2-EREBP (stress responsive pathway), Hsp20, bZIP1 and COC1 (chaperones in ABA signalling) in Pseudomonas fluorescens treated rice, LbKT1, LbSKOR (encoding potassium channels) in Lycium, PtYUC3 and PtYUC8 (IAA biosynthesis) in AMF inoculated Poncirus, ADC, AIH, CPA, SPDS, SPMS and SAMDC (polyamine biosynthesis) in PGPR inoculated Arabidopsis, 14-3-3 genes (TFT1-TFT12 genes in ABA signalling pathways) in AMF treated Solanum, ACO, ACS (ethylene biosynthesis), jasmonate MYC2 gene in chick pea, PR1 (SA regulated gene), pdf1.2 (JA marker genes) and VSP1 (ethylene-response gene) in Pseudomonas treated Arabidopsis plants. Moreover, the key role of miRNAs in MIST has also been recorded in Pseudomonas putida RA treated chick pea plants.


Sign in / Sign up

Export Citation Format

Share Document