scholarly journals Interactive Role of Silicon and Plant–Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1055
Author(s):  
Krishan K. Verma ◽  
Xiu-Peng Song ◽  
Dong-Mei Li ◽  
Munna Singh ◽  
Vishnu D. Rajput ◽  
...  

Abiotic stresses are the major constraints in agricultural crop production across the globe. The use of some plant–microbe interactions are established as an environment friendly way of enhancing crop productivity, and improving plant development and tolerance to abiotic stresses by direct or indirect mechanisms. Silicon (Si) can also stimulate plant growth and mitigate environmental stresses, and it is not detrimental to plants and is devoid of environmental contamination even if applied in excess quantity. In the present review, we elaborate the interactive application of Si and plant growth promoting rhizobacteria (PGPRs) as an ecologically sound practice to increase the plant growth rate in unfavorable situations, in the presence of abiotic stresses. Experiments investigating the combined use of Si and PGPRs on plants to cope with abiotic stresses can be helpful in the future for agricultural sustainability.

BIOLOVA ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 96-107
Author(s):  
Elza - Yulistiana ◽  
Hening Widowati ◽  
Agus Sutanto

Increasing agricultural crop production, especially onion, can be done by improving the optimal growing environment for plants. Plant roots can be optimized for the absorption of nutrients and water in the process of photosynthesis. One way that can be used is by applying Plant Growth Promoting Rhizobacteria (PGPR). In addition to increasing the content of micro and macro elements in the soil can also support the growth of leek plants obtained by applying Pineapple Liquid Waste (LCN) made using bacterial isolation and can meet the needs of nutrients in plants. This study aims to determine the effect Plant Growth Promoting Rhizobacteria (PGPR) from Apus (Gigantochola apus) bamboo root and Pineapple Liquid Waste (LCN) fertilizer on the growth of leeks (Allium fistulosum L.), then the results of this study are treated as community information in the form of Leaflets. The method used in this study was an experiment using a Completely Randomized Design (CRD) system consisting of 4x4 factorials with 3 replications. Based on the results of calculations and data analysis, the results show that there is an effect of PGPR and LCN on the growth of scallions on the height and number of tillers per scallion plant family, but there is no influence on pseudo stem circumference and wet weight per scallion plant family, and the results of this study can be used as a source of public information in the form of leaflets with an average percentage included in good eligibility criteria.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 337
Author(s):  
Rafael J. L. Morcillo ◽  
Maximino Manzanera

Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.


The Analyst ◽  
2021 ◽  
Author(s):  
Yuchen Zhang ◽  
Rachel Komorek ◽  
Jiyoung Son ◽  
Shawn Riechers ◽  
Zihua Zhu ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanism(s) by which plants associate with PGPR to elicit...


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2019 ◽  
Vol 20 (7) ◽  
pp. 1769 ◽  
Author(s):  
Manoj Kaushal

Drought conditions marked by water deficit impede plant growth thus causing recurrent decline in agricultural productivity. Presently, research efforts are focussed towards harnessing the potential of microbes to enhance crop production during drought. Microbial communities, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) buddy up with plants to boost crop productivity during drought via microbial induced systemic tolerance (MIST). The present review summarizes MIST mechanisms during drought comprised of modulation in phytohormonal profiles, sturdy antioxidant defence, osmotic grapnel, bacterial exopolysaccharides (EPS) or AMF glomalin production, volatile organic compounds (VOCs), expression of fungal aquaporins and stress responsive genes, which alters various physiological processes such as hydraulic conductance, transpiration rate, stomatal conductivity and photosynthesis in host plants. Molecular studies have revealed microbial induced differential expression of various genes such as ERD15 (Early Response to Dehydration 15), RAB18 (ABA-responsive gene) in Arabidopsis, COX1 (regulates energy and carbohydrate metabolism), PKDP (protein kinase), AP2-EREBP (stress responsive pathway), Hsp20, bZIP1 and COC1 (chaperones in ABA signalling) in Pseudomonas fluorescens treated rice, LbKT1, LbSKOR (encoding potassium channels) in Lycium, PtYUC3 and PtYUC8 (IAA biosynthesis) in AMF inoculated Poncirus, ADC, AIH, CPA, SPDS, SPMS and SAMDC (polyamine biosynthesis) in PGPR inoculated Arabidopsis, 14-3-3 genes (TFT1-TFT12 genes in ABA signalling pathways) in AMF treated Solanum, ACO, ACS (ethylene biosynthesis), jasmonate MYC2 gene in chick pea, PR1 (SA regulated gene), pdf1.2 (JA marker genes) and VSP1 (ethylene-response gene) in Pseudomonas treated Arabidopsis plants. Moreover, the key role of miRNAs in MIST has also been recorded in Pseudomonas putida RA treated chick pea plants.


Sign in / Sign up

Export Citation Format

Share Document