scholarly journals Fatty acid changes in liver and plasma lipid fractions after safflower oil was fed to rats deficient in essential fatty acids

1967 ◽  
Vol 105 (1) ◽  
pp. 343-350 ◽  
Author(s):  
R. R. Johnson ◽  
P. Bouchard ◽  
J. Tinoco ◽  
R. L. Lyman

1. Fatty acid patterns of liver and plasma triglycerides, phospholipids and cholesteryl esters were determined at intervals during 24hr. after essential fatty acid-deficient rats were given one feeding of linoleate (as safflower oil). 2. Liver triglyceride, phospholipid and cholesteryl ester fatty acid compositions did not change up to 7hr. after feeding. Between 7 and 10hr., linoleic acid began to increase in all fractions, but arachidonic acid did not begin to rise in the phospholipid until 14–19hr. after feeding. 3. Oleic acid and eicosatrienoic acid in liver phospholipid began to decline at about the time that linoleic acid increased, i.e. about 9hr. before arachidonic acid began to increase. 4. Changes in linoleic acid, arachidonic acid and eicosatrienoic acid in phosphatidylcholine resembled those of the total phospholipid. Phosphatidylethanolamine had a higher percentage content of arachidonic acid before the linoleate was given than did phosphatidylcholine, and after the linoleate was given the fatty acid composition of this fraction was little changed. 5. The behaviour of the plasma lipid fatty acids was similar to that of the liver lipids, with changes in linoleic acid, eicosatrienoic acid and arachidonic acid appearing at the same times as they occurred in the liver. 6. The results indicated that linoleic acid was preferentially incorporated into the liver phospholipid at the expense of eicosatrienoic acid and oleic acid. The decline in these fatty acids apparently resulted from their competition with linoleic acid for available sites in the phospholipids rather than from any direct replacement by arachidonic acid.

1978 ◽  
Vol 40 (1) ◽  
pp. 155-157 ◽  
Author(s):  
A. G. Hassam ◽  
M. A. Crawford

1. Rats were fed on either a diet deficient in essential fatty acid (EFA) or one supplemented with dihomo-γ-linolenic acid (20:3,n-6) at levels that represented 0.25, 0.5, 1.0 and 2.0% of the dietary energy.2. Supplementation of the diet of EFA-deficient animals with 20:3,n-6 reversed most of the fatty acid changes induced in the liver phospholipid fraction.3. The EFA potency of 20:3,n-6 was found to be similar to that of γ-linolenic acid (18:3,n-6) which has been shown to be higher than that of linoleic acid (18:2,n-6).


1976 ◽  
Vol 36 (3) ◽  
pp. 479-486 ◽  
Author(s):  
C. B. Cowey ◽  
J. M. Owen ◽  
J. W. Adron ◽  
C. Middleton

1. Five groups of juvenile turbot (Scophthalmus maximus) which had been given a diet free of fat for 12 weeks were given diets in which the lipid component (g/kg) was: oleic acid alone 50, oleic acid 40+linoleic acid 10, oleic acid 40+linolenic acid 10, oleic acid 40+arachidonic acid 10 or oleic acid 40+cod-liver oil 10. These five experimental diets were given for 16 weeks.2. Weight gains were highest in the group given the diet containing cod-liver oil and lowest in the groups given diets containing oleic acid alone or oleic acid+linoleic acid. Weight gains in the groups given oleic acid+arachidonic acid or linolenic acid were markedly inferior to those of the group given oleic acid+cod-liver oil. It is concluded that arachidonic acid is inferior to polyunsaturated fatty acids of the ω3 series in maintaining growth rate in turbot.3. Fatty acid analyses of neutral lipids and phospholipids of liver and extrahepatic tissues did not suggest any evidence of desaturation of dietary oleic acid, linoleic acid or linolenic acid by the turbot. These experiments confirm previous isotopic evidence that turbot lack the necessary microsomal desaturases to perform this metabolic transformation.


2012 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Raden Roro Sri Pudji Sinarni Dewi ◽  
Priadi Setyawan ◽  
Evi Tahapari ◽  
Adam Robisalmi ◽  
Nunuk Listiyowati

The aim of this research was to investigate the nutritive composition (especially fatty acids) in red tilapia that was reared in freshwater and brackishwater. The fatty acid contents were determined by gas chromatography. The fatty acids profile were -3 (linolenic acid, eicosapentaenoic acid/EPA, docosahexaenoic acid/DHA), -6 (linoleic acid, arachidonic acid/AA), and -9 (oleic acid). Red tilapia samples were obtained from Research Institute for Fish Breeding, Sukamandi, West Java (freshwater ponds) and Congot, Yogyakarta (brackishwater ponds; salinity 20 ppt). In this research, red tilapia reared in different ecosystems showed different fatty acid profiles. Red tilapia inhabiting brackishwater ecosystem has EPA (0.26±0.05%), DHA (3.42±0.26%), and linoleic acid (17.20±0.56%) content higher than freshwater ecosystem (EPA = 0%; DHA = 0.67±0.44%; linoleic acid = 9.08±4.76%), except for linolenic acid (0.30±0.15% vs 0.25±0.10%), arachidonic acid (0.77±0.39% vs 0.93±0.13%) and oleic acid (38.67±2.58% vs 37.44±0.74%). The ratio of -6/-3 in red tilapia inhabiting freshwater ecosystem was about 11/1. The culture tilapia in brackishwater ecosystem decrease -6/-3 ratio (4.5:1). So that for human health, it will be better to consume brackishwater red tilapia than freshwater red tilapia.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 775-775
Author(s):  
Jiang Shan ◽  
Yang Zhenyu ◽  
Wang Jie ◽  
Duan Yifan ◽  
Pang Xuehong ◽  
...  

Abstract Objectives To investigate the fatty acids composition in different lactation stages of human milk in China. Methods A large cross-sectional study was conducted and lactating women (n = 6481) within 0–330 days postpartum were recruited in China between 2011 and 2013. Human milk sub-samples (n = 1135) were randomly selected for fatty acids analysis in the original study. The sample size of colostrum, transitional milk, and mature milk were 160, 177, 798 respectively. Fats were hydrolyzed and fatty acids methyl esters were analyzed using gas chromatography. Results The content of oleic acid, the highest level fatty acid in human milk, was 36.63%, 34.53% and 35.12% of total fatty acids in colostrum, transitional milk, and mature milk, respectively in China. The content of palmitic acid was about 23.69%, 21.90% and 20.82% in colostrum, transitional milk, and mature milk, respectively. Saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids accounted for 36.99%, 39.14% and 23.49% of total fatty acids of mature milk, respectively. The content of linoleic acid and arachidonic acid was 20.47% and 0.54% in mature milk, respectively. The content of eicosapentaenoic acid (EPA) and docosahexenic acid (DHA) was 0.06% and 0.28% in mature milk, respectively. In addition to lactation stage, the fatty acids content differed significantly among various regions, nationalities, or mode of delivery. (i.e., Regions (city vs rural): oleic acid: 33.8% vs 36.4%; linoleic acid: 22.88% vs 17.21%; arachidonic acid:0.64%vs 0.59%; DHA: 0.42% vs 0.26%; EPA: 0.09% vs 0.04%. Nationality (Han vs Minority): oleic acid: 34.40% vs 36.59%; linoleic acid: 21.69% vs 16.54%; arachidonic acid:0.64%vs 0.57%; DHA: 0.38% vs 0.24%; EPA: 0.08% vs 0.04%.). Conclusions Oleic acid is the most abundant fatty acids in human milk of China. In addition to lactation stage, the fatty acid concentrations vary among different regions and nationalities in China. Funding Sources This study was supported by Beijing Natural Science Foundation (S160002), the National Key R&D Program of China (2017YFD0400601) and the National High Technology Research and Development Program of China (863 Program) (2010AA023004).


1965 ◽  
Vol 97 (2) ◽  
pp. 485-499 ◽  
Author(s):  
R Ostwald ◽  
P Bouchard ◽  
P Miljanich ◽  
RL Lyman

1. Groups of intact male and female rats and castrated rats injected with oestradiol or testosterone were given a diet containing hydrogenated coconut oil for 9 weeks, and at intervals the amounts and fatty acid compositions of the carcass and liver lipids were determined. 2. Male rats grew faster and larger, and exhibited typical external essential fatty acid deficiency symptoms sooner than did females. Testosterone-treated castrated male rats were similar to males, and oestradiol-injected castrated male rats resembled females. 3. Intact females maintained a higher linoleic acid concentration in their carcass than did males. Total amounts of carcass linoleic acid remained similar for all groups, only 200mg. being removed in 9 weeks regardless of body size. 4. The amounts of total cholesteryl esters were independent of liver size. They were higher in males and testosterone-treated castrated male rats than in females and oestrogen-treated castrated male rats. 5. Phospholipids represented about 80% of the liver lipids. The total amounts of the phospholipid linoleic acid and arachidonic acid were similar for all groups regardless of liver size, and were not affected appreciably by the deficiency. Females and oestrogen-treated castrated male rats maintained a higher proportion of phospholipid arachidonic acid for longer periods than did their male counterparts. Both the total amounts and the proportions of eicosatrienoic acid and palmitic acid were higher in males than in females. 6. Supplementation of the essential fatty acid-deficient diet with linoleic acid caused a rapid loss of eicosatrienoic acid and palmitic acid with a concomitant increase in stearic acid and arachidonic acid. 7. There were no obvious differences in the way that the essential fatty acids were metabolized or mobilized from adipose tissue of male or female rats during essential fatty acid deficiency. 8. The results indicated that the greater growth rate of the male rats caused them to require and synthesize more phospholipids than did the females. In the absence of adequate amounts of arachidonic acid, eicosatrienoic acid was substituted into the additional phospholipid. The earlier symptoms of essential fatty acid deficiency in the male rat could therefore be ascribed to the higher tissue concentrations of this unnatural phospholipid and its inability to perform the normal metabolic functions of phospholipids.


2012 ◽  
Vol 66 (2) ◽  
pp. 207-209 ◽  
Author(s):  
Boris Pejin ◽  
Ljubodrag Vujisic ◽  
Marko Sabovljevic ◽  
Vele Tesevic ◽  
Vlatka Vajs

The fatty acid composition of the moss species Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) and Hypnum andoi A.J.E. Sm. (Hypnaceae) collected in winter time were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) as a contribution to their chemistry. Eight fatty acids were identified in the chloroform/methanol extract 1:1 of A. undulatum (linoleic acid 26.80%, palmitic acid 22.17%, ?-linolenic acid 20.50%, oleic acid 18.49%, arachidonic acid 6.21%, stearic acid 3.34%, cis-5,8,11,14,17-eicosapentaenoic acid 1.52% and behenic acid 1.01%), while six fatty acids were found in the same type of extract of H. andoi (palmitic acid 63.48%, erucic acid 12.38%, stearic acid 8.08%, behenic acid 6.26%, lignoceric acid 5.16% and arachidic acid 4.64%). According to this study, the moss A. undulatum can be considered as a good source of both essential fatty acids for humans (linoleic acid and ?-linolenic acid) during the winter.


1972 ◽  
Vol 71 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Knut Kirkeby

ABSTRACT The fatty acid composition of cholesterol esters, phospholipids, and triglycerides of the serum has been studied in groups of hyperthyroid and hypothyroid women and also in control material matched for age. In hyperthyroidism, a decrease in the proportions of linoleic acid and an increase in the proportions of some saturated and mono-unsaturated fatty acids were observed. When absolute concentrations were considered, it appeared that the decrease in linoleic acid was almost equivalent to the entire decrease in total fatty acids in the serum of the hyperthyroid patients. In hypothyroidism no changes were noted in the proportions of linoleic, saturated and mono-unsaturated fatty acids, and the absolute concentrations reflected the general increase in serum lipids. It is believed that these findings may be explained by the changes in lipid turnover which are known to occur in disturbances of thyroid function. In hyperthyroidism, they lead to a linoleic acid deficiency, while a sparing effect must be operating in hypothyroidism. The finding of relatively high linoleic acid values combined with hyperlipaemia in hypothyroidism seems to be characteristic of the condition, since other types of hyperlipaemia are almost invariably combined with low percentages of linoleic acid. Results regarding arachidonic and eicosatrienoic acid are consistent with increased synthesis in hyperthyroidism, and decreased synthesis in hypothyroidism.


1986 ◽  
Vol 59 (5) ◽  
pp. 800-808 ◽  
Author(s):  
James M. Sloan ◽  
Michael J. Maghochetti ◽  
Walter X. Zukas

Abstract An effort to characterize the reversion process of guayule rubber when naturally-occurring guayule resin components are present has shown that these components act as a reversion-retarding material. The amount of reversion resistance varies as a function of temperature, concentration, and type of fatty acid. Of the three fatty acids used, linoleic acid, stearic acid, and oleic acid, linoleic acid performed the best for reversion resistance, followed by stearic acid, then oleic acid. When the temperature was increased 10°C, an increase of 15% reversion was observed. This held true for the three temperatures studied. In addition, the amount of reversion improvement upon addition was 20% reversion. In the case of curing at 150°C, this resulted in 0% reversion. The 20% resistance improvment was consistent for the 3 temperatures studied.


1963 ◽  
Vol 18 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Wolfgang Heinen ◽  
Ingeborg V. D. Brand

1. Three fatty acid oxidizing enzymes, stearic and oleic acid oxidase as well as lipoxidase have been shown to be present in leaves of Gasteria verricuosa.2. By following the activity of these enzymes after injury we considered that they are involved in cutin synthesis which takes place at the wounded top of the leaf.3. Comparing the activity near the wounded part and the untreated inner sphere of the leaf lead to the conclusion that two of the oxidases (stearic and oleic oxidase) serve as substrate donors for lipoxydase by converting stearic into oleic and the latter into linoleic acid.4. Since the level of polyenic acids in leaves is high in comparison to saturated fatty acids, the activity of stearic and oleic oxidase only increases in the late phase of cutin synthesis, while lipoxydase is highly activated at the top directly after wounding and in the inner part of the leaf 3 - 4 weeks after cutin synthesis has started. At the same time pectinase shows its highest activity, suggesting that the formation of the pectic layer is secondary to the formation of cutin.5. Simultaneously to the enzymatic assays, cutin formation was followed by macro- and microscopic studies.6. The mode of action of lipoxydase and the interrelationship of the oxidizing enzymes in the formation of cutin are discussed and a formula for the structure of Gasteria cutin is given.7. According to the data presented here and the results obtained from literature, a possible scheme for cutin synthesis is given.


Sign in / Sign up

Export Citation Format

Share Document