scholarly journals Partial characterization of a biologically active steroid glycoside isolated from the starfish Marthasterias glacialis

1970 ◽  
Vol 117 (3) ◽  
pp. 543-550 ◽  
Author(s):  
A. M. Mackie ◽  
A. B. Turner

1. A steroid glycoside (M2), which induces avoidance and other reactions in the mollusc Buccinum undatum, has been isolated from extracts of the starfish Marthasterias glacialis by ion-exchange chromatography. 2. The steroid glycoside was homogeneous by t.l.c. and contained glucose, quinovose, fucose and sulphate in the molar proportions 1:2:1:1, in addition to a water-insoluble aglycone. 3. The aglycone was identified as a cholestane derivative containing an unusual Δ24-23-ketone system, two secondary hydroxyl groups and an olefinic double bond, and had the molecular formula C27H42O3. 4. The rates of release of sugars and sulphate suggested that fucose was at the non-reducing end of the oligosaccharide, with glucose glycosidically linked to the steroid. The sulphate group appeared to be linked to the other hydroxyl group of the steroid.

Author(s):  
Oun D. Khudair ◽  
Diar A. Fatih

Abstract       The target derivative are gentamicin linked with L-Val- L-Ala by an ester linkage. These were synthesized by esterification method, which included the reaction of -OH hydroxyl group on (carbon No.5) of gentamicin with the acid chloride of the corresponding dipeptide, The preparation of new derivative of gentamicin involved protected the primary & secondary amine groups of Gentamicin, by Ethylchloroformate (ECF) to give N-carbomethoxy Gentamicin which was used for further chemical synthesis involving the free hydroxyl groups. Then prepared dipeptide (L-Val- L-Ala) by conventional solution method in present DCC & HoBt then reacted with thionyl chloride to prepared acid chloride of dipeptides, then after, linked by ester linkage to N-protection gentamicin in present pyridine as base, finally deportation the amino group of synthesized compound by using TFAA in present anisole. The characterization of the titled compounds were performed utilizing FTIR spectroscopy, CHNS elemental analysis, and by measurements of their physical properties.  


1974 ◽  
Vol 137 (2) ◽  
pp. 263-272 ◽  
Author(s):  
John K. Findlay ◽  
Lothar Siekmann ◽  
Heinz Breuer

1. 18-Hydroxyoestrone was reduced by NaBH4 in methanol, giving 18-hydroxyoestradiol-17α and 18-hydroxyoestradiol-17β in the ratio 3:7. 2. Treatment of 18-hydroxyoestrone with a strong alkali yielded 18-noroestrone; however, the 18-hydroxyoestradiols did not undergo transformation to their respective 18-nor derivatives. 3. All the 18-hydroxylated oestrogens were stable under acid conditions. They formed Kober chromogens: the chromogenicity of 18-hydroxyoestrone was only one-third that of the 18-hydroxyoestradiols and oestriol. 4. Paper-, thin-layer- and gas–liquid-chromatographic systems for the characterization of these compounds are described. 5. An examination of the mass spectra revealed peaks characteristic of the substituted carbon atoms. Definite assignment of the 17α- and 17β-hydroxyl groups of the epimeric 18-hydroxyoestrogens was possible by characteristic fragmentation of the free steroids. Further, the configuration of 18-hydroxyoestradiol-17β was confirmed by the formation of the dimethylsildioxy derivative of the 3-methylether of the steroid. 6. Both rat and rabbit liver slices reduced 18-hydroxyoestrone to 18-hydroxyoestradiol-17β and some other labile, polar metabolites with properties similar to 2-hydroxylated oestrogens. No formation of 18-hydroxyoestradiol-17α in vitro was observed. 7. The results are discussed with respect to the possible influence of the 18-hydroxyl group on reactions at C-17, as well as the reactions of 18-hydroxylated oestrogens with strong acid (Kober reactions) and alkali.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 446 ◽  
Author(s):  
Christian Zurhelle ◽  
Joyce Nieva ◽  
Urban Tillmann ◽  
Tilmann Harder ◽  
Bernd Krock ◽  
...  

Cyclic imine toxins are neurotoxic, macrocyclic compounds produced by marine dinoflagellates. Mass spectrometric screenings of extracts from natural plankton assemblages revealed a high chemical diversity among this toxin class, yet only few toxins are structurally known. Here we report the structural characterization of four novel cyclic-imine toxins (two gymnodimines (GYMs) and two spirolides (SPXs)) from cultures of Alexandrium ostenfeldii. A GYM with m/z 510 (1) was identified as 16-desmethylGYM D. A GYM with m/z 526 was identified as the hydroxylated degradation product of (1) with an exocyclic methylene at C-17 and an allylic hydroxyl group at C-18. This compound was named GYM E (2). We further identified a SPX with m/z 694 as 20-hydroxy-13,19-didesmethylSPX C (10) and a SPX with m/z 696 as 20-hydroxy-13,19-didesmethylSPX D (11). This is the first report of GYMs without a methyl group at ring D and SPXs with hydroxyl groups at position C-20. These compounds can be conceived as derivatives of the same nascent polyketide chain, supporting the hypothesis that GYMs and SPXs are produced through common biosynthetic genes. Both novel GYMs 1 and 2 were detected in significant amounts in extracts from natural plankton assemblages (1: 447 pg; 2: 1250 pg; 11: 40 pg per mL filtered seawater respectively).


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


1984 ◽  
Vol 51 (01) ◽  
pp. 016-021 ◽  
Author(s):  
S Birken ◽  
G Agosto ◽  
B Lahiri ◽  
R Canfield

SummaryIn order to investigate the early release of NH2-terminal plasmic fragments from the Bβ chain of fibrinogen, substantial quantities of Bβ 1-42 and Bβ 1-21 are required as immunogens, as radioimmunoassay standards and for infusion into human volunteers to determine the half-lives of these peptides. Towards this end methods that employ selective proteolytic cleavage of these fragments from fibrinogen have been developed. Both the N-DSK fragment, produced by CNBr cleavage of fibrinogen, and Bβ 1-118 were employed as substrates for plasmin with the finding of higher yields from N-DSK. Bβ 1-42 and Bβ 1-21 were purified by gel filtration and ion-exchange chromatography on SP-Sephadex using volatile buffers. When the purified preparation of Bβ 1-42 was chromatographed on reverse-phase high performance liquid chromatography, two peaks of identical amino acid composition were separated, presumably due either to pyroglutamate or to amide differences.


Author(s):  
Akanksha Gupta ◽  
Abhishek K Tripathi ◽  
Pushpraj S Gupta

Background: Bauhinia variegata Linn. is a native plant of Asia and China. B. variegata is found in tropical regions of the world. It belongs to family Leguminosae. It is used for diarrhea, hemorrhoids, constipation, piles, edema, leprosy, wounds, tumors, etc.  Objective: The objective of the present study was to perform extraction of B. variegata flower and isolation of active constituents from the extract. Materials and Methods: The ethanolic extraction of B. variegata flower was performed using the Soxhlet apparatus. The isolation of active constituents from the extract was performed using chromatographic techniques. In column chromatographic studies, n-hexane- [dichloromethane (DCM)] (2:8) was used as an eluting system and further purified through thin layer chromatography (TLC). Compound A and B were isolated through chromatographic techniques, then the molecular formula and characterization of these compounds were carried out with mass and infrared (IR) spectral analysis. Results and Discussion: The percentage yield of B. variegata ethanolic extract (BVE) was found to be 20.8% w/w. The different fractions were F1 having 12.5 grams with n-hexane, F2 (17.1 grams) with CH2Cl2, F3 (21.2 grams) with EtOAc, and F4 (13.4 grams) with EtOH. Compound A and B were isolated from the solvent fractions of n-hexane-DCM (2:8) and EtOAc-DCM (1:9), respectively. The compound A was characterized as 3-hydroxy-6-methoxy-2-phenyl-4H-chromen-4-one. The compound B was characterized as 3-hydroxy-6-methyl-2-phenyl-4H-chromen-4-one. Conclusion: Thus, B. variegata flowers possess active components that need to identify their biological activities.


2018 ◽  
Vol 18 (14) ◽  
pp. 1167-1174 ◽  
Author(s):  
Petra Lovecka ◽  
Jan Lipov ◽  
Kamila Thumova ◽  
Anna Macurkova

1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Toheed Akhter ◽  
Humaira Masood Siddiqi ◽  
Zareen Akhter ◽  
M. Saeed Butt

AbstractComposites from some novel polyimide and commercial epoxy were prepared aiming to improve the thermal behavior of epoxy resins. Two diamines namely 4-4'-diamino-4''-hydroxytriphenyl methane (DHTM) and 4-4'- diaminotriphenyl methane (DTM) were synthesized by reacting aniline and aldehydes according to a reported method. The synthesized diamines were blended with commercially available epoxy 1, 4-butanedioldiglycidylether (BDDE) to synthesize model epoxy amine networks which were compared with polyimideepoxy composites. The polyimides were synthesized by reaction of these diamines with aromatic anhydride namely 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA). These synthesized polyimides were dispersed in epoxy diamine networks to prepare composites. All the monomers and composites were characterized by making use of various analytical techniques including FTIR, NMR, TGA, DSC and XRD. Presence of hydroxyl group in the diamine helped in better dispersion of polyimide leading to high Tg and high char yield at 600 °C.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2131
Author(s):  
Leonardo Dalseno Antonino ◽  
Júlia Rocha Gouveia ◽  
Rogério Ramos de Sousa Júnior ◽  
Guilherme Elias Saltarelli Garcia ◽  
Luara Carneiro Gobbo ◽  
...  

Several efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and p-hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature. In this work, the hydroxyl reactivity of two kraft lignin grades towards 4,4′-diphenylmethane diisocyanate (MDI) was investigated. 31P NMR allowed the monitoring of the reactivity of each hydroxyl group in the lignin structure. FTIR spectra revealed the evolution of peaks related to hydroxyl consumption and urethane formation. These results might support new PU developments, including the use of unmodified lignin and the synthesis of MDI-functionalized biopolymers or prepolymers.


Sign in / Sign up

Export Citation Format

Share Document