scholarly journals The composition of the cell wall of Fusicoccum amygdali

1971 ◽  
Vol 125 (2) ◽  
pp. 461-471 ◽  
Author(s):  
K. W. Buck ◽  
M. A. Obaidah

1. The cell wall of Fusicoccum amygdali consisted of polysaccharides (85%), protein (4–6%), lipid (5%) and phosphorus (0.1%). 2. The main carbohydrate constituent was d-glucose; smaller amounts of d-glucosamine, d-galactose, d-mannose, l-rhamnose, xylose and arabinose were also identified, and 16 common amino acids were detected. 3. Chitin, which accounted for most of the cell-wall glucosamine, was isolated in an undegraded form by an enzymic method. Chitosan was not detected, but traces of glucosamine were found in alkali-soluble and water-soluble fractions. 4. Cell walls were stained dark blue by iodine and were attacked by α-amylase, with liberation of glucose, maltose and maltotriose, indicating the existence of chains of α-(1→4)-linked glucopyranose residues. 5. Glucose and gentiobiose were liberated from cell walls by the action of an exo-β-(1→3)-glucanase, giving evidence for both β-(1→3)- and β-(1→6)-glucopyranose linkages. 6. Incubation of cell walls with Helix pomatia digestive enzymes released glucose, N-acetyl-d-glucosamine and a non-diffusible fraction, containing most of the cell-wall galactose, mannose and rhamnose. Part of this fraction was released by incubating cell walls with Pronase; acid hydrolysis yielded galactose 6-phosphate and small amounts of mannose 6-phosphate and glucose 6-phosphate as well as other materials. Extracellular polysaccharides of a similar nature were isolated and may be formed by the action of lytic enzymes on the cell wall. 7. About 30% of the cell wall was resistant to the action of the H. pomatia digestive enzymes; the resistant fraction was shown to be a predominantly α-(1→3)-glucan. 8. Fractionation of the cell-wall complex with 1m-sodium hydroxide gave three principal glucan fractions: fraction BB had [α]D +236° (in 1m-sodium hydroxide) and showed two components on sedimentation analysis; fraction AA2 had [α]D −71° (in 1m-sodium hydroxide) and contained predominantly β-linkages; fraction AA1 had [α]D +40° (in 1m-sodium hydroxide) and may contain both α- and β-linkages.

1971 ◽  
Vol 125 (2) ◽  
pp. 473-480 ◽  
Author(s):  
M. A. Obaidah ◽  
K. W. Buck

1. The nature of two polysaccharides (s020 values 6S and 2S respectively in 1m-sodium hydroxide), comprising a fragment (fraction BB, [α]D +236° in 1m-sodium hydroxide), previously isolated from cell walls of Fusicoccum amygdali, has been investigated. 2. Both the major (2S) and minor (6S) components were affected by incubation with α-amylase. The 6S polysaccharide was also attacked by exo-β-(1→3)-glucanase, which is evidence that it contained both α-(1→4)- and β-(1→3)-glucopyranose linkages. By fractionation of the products of α-amylase-treated fraction BB it was possible to obtain a water-insoluble polysaccharide, fraction P ([α]D +290° in 1m-sodium hydroxide, 67% of fraction BB) and a water-soluble polysaccharide, fraction Q ([α]D +16° in 1m-sodium hydroxide, 11% of fraction BB), both of which sedimented as single boundaries with s020 values (in 1m-sodium hydroxide) of 1.7S and 4.6S respectively. 3. Evidence from periodate oxidation, methylation analysis, i.r. spectroscopy and partial acid hydrolysis showed that fraction P consisted of linear chains of α-(1→3)-glucopyranose units with blocks of one or two α-(1→4)-glucopyranose units interspersed at intervals along the main chain. The 2S polysaccharide, from which fraction P is derived, evidently also contains longer blocks of α-(1→4)-glucopyranose units, that are susceptible to α-amylase action. 4. Fraction Q consisted of glucose (88%) with small amounts of galactose, mannose and rhamnose. Evidence from digestion with exo- and endo-β-(1→3)-glucanases, periodate oxidation and methylation analysis suggests that fraction Q consists of a branched galactomannorhamnan core, to which is attached a β-(1→3)-, β-(1→6)-glucan. In the cell wall, chains of α-(1→4)-linked glucopyranose units are linked to fraction Q to form the 6S component of fraction BB.


1997 ◽  
Vol 10 (7) ◽  
pp. 803-811 ◽  
Author(s):  
B. Boher ◽  
M. Nicole ◽  
M. Potin ◽  
J. P. Geiger

The location of lipopolysaccharides produced by Xanthomonas axonopodis pv. manihotis during pathogenesis on cassava (Manihot esculenta) was determined by fluorescence and electron microscopy immunolabeling with monoclonal antibodies. During the early stages of infection, pathogen lipopolysaccharides were detected on the outer surface of the bacterial envelope and in areas of the plant middle lamellae in the vicinity of the pathogen. Later in the infection process, lipopolysaccharide-specific antibodies bound to areas where the plant cell wall was heavily degraded. Lipopolysaccharides were not detected in the fibrillar matrix filling intercellular spaces of infected cassava leaves. Monoclonal antibodies specific for the exopolysaccharide xanthan side chain labeled the bacteria, the fibrillar matrix, and portions of the host cell wall. The association of Xanthomonas lipopolysaccharides with host cell walls during plant infection is consistent with a role of these bacterial extracellular polysaccharides in the infection process.


2020 ◽  
Author(s):  
D Chen ◽  
PJ Harris ◽  
Ian Sims ◽  
Z Zujovic ◽  
LD Melton

© The Author(s). 2017. Background: Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. Results: This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Conclusions: Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 468d-468
Author(s):  
L.D. Melton ◽  
L.M. Davies

Cell wall changes during ripening have a major effect on fruit texture. The cell walls isolated using phenol-Tris buffer were sequentially extracted to give polysaccharide fractions that contained mainly water-soluble pectin, chelator-soluble (CDTA) pectin, hemicelluloses (0.05 M Na2CO3 followed by 1M and 4M KOH) and cellulose. The fractions were analyzed colorimetrically for uronic acid, total neutral sugar and cellulose contents. The component sugars of each fraction were determined as their alditol acetates by GC. Then was a decrease in the two pectin fractions during ripening. The pectins appear to have arabinan and galactan side chains. Pectic galactose decreases during ripening. The weight of the combined hemicellulose fractions did not change during ripening, nor did the cellulose level. At least two types of arabinan are present. Pectins were found in all cell wall fractions. Nashi cell walls contain a relatively large amount of xylan compared to other fruit.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Marcela Suriani Ribeiro ◽  
Renato Graciano de Paula ◽  
Aline Raquel Voltan ◽  
Raphaela Georg de Castro ◽  
Cláudia Batista Carraro ◽  
...  

Trichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. β-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have β-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-β-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.


The cell walls of members of the Vaucheriaceae and Saprolegniaceae have been examined by X-ray analysis and electron microscopy, and their composition determined by hydrolysis and paper partition chromatography of the hydrolysates. Both differences and similarities between the members of these two species examined are found to supplement the comparative morphological and physiological information at present available. Saprolegnia , Achlya , Brevilegnia and Dictyuchus among the Saprolegniaceae possess hot-water soluble polysaccharides containing glucose residues only. This polysaccharide is not crystallographically identical with the polysaccharide found in Vaucheria sessilis with a similar solubility. The members of the Saprolegniaceae contain large amounts of alkali-soluble polysaccharides in contrast with the negligible amount found in V. sessilis . These polysaccharides are only weakly crystalline, but the indications are that the same polysaccharides may occur through­out the Saprolegniaceae. The alkali-insoluble wall material of Vaucheria species consists of highly crystalline native cellulose with large, apparently randomly arranged, microfibrils. The hydrolysate of this material contains ribose, xylose and arabinose in addition to glucose, presumably representing strongly bound pentosans. Native cellulose also occurs in the Saprolegniaceae but only in small proportion. The bulk of the alkali-insoluble fraction in the walls of these fungi appears amorphous in the electron microscope and is only weakly crystalline. It consists of one or m ore substances containing glucose, mannose, ribose and possibly other sugars together with traces of glucosamine. These substances presumably cover the cellulose microfibrils. The total quantity of non-cellulosic polysaccharide in the Saprolegniaceae approaches 85% of the total wall weight in contrast with the situation in Vaucheria where the cellulose alone approaches 90% of the total cell wall. Dichotomosiphon is unique among the organism s studied in this paper, in possessing a cell wall entirely soluble in alkali and composed of approximately equal quantities of glucose and xylose. The crystalline component is aβ-1,3-linked xylan, as already reported for some of the Siphonales (closely related algae) by Frei & Preston.


1992 ◽  
Vol 117 (4) ◽  
pp. 600-606 ◽  
Author(s):  
H. Yoshioka ◽  
K. Aoba ◽  
Y. Kashimura

The concentrations of water-soluble polyuronides in apples [Malus domestica Borkh.) and pears (Pyrus communis L.) increased, but those of EDTA- and HCl-soluble polyuronides decreased during softening. Total polyuronide content decreased slightly during softening in both fruits. Depolymerization of polyuronides was observed only in the water-soluble fraction in pear fruit during softening, concomitant with an increase in polygalacturonase (PG) activity. No detectable depolymerization was observed in any of the polyuronide fractions during softening of apple fruit nor was any PG activity detected. The polyuronide fractions extracted from pear and apple cell walls contained various amounts of methoxyl groups. Polyuronides with a high degree of methoxylation were preferentially lost from EDTA- and HCl-soluble polyuronides during softening of both fruit. The water-soluble polyuronide had a lower degree of methoxylation than those lost in the EDTA- and HCl-soluble fractions. These results suggest de-esterification of polyuronides with a high degree of methoxylation rather than the depolymerization of polyuronides in the solubilization of polyuronides during ripening of apples and pears.


1975 ◽  
Vol 21 (4) ◽  
pp. 442-452 ◽  
Author(s):  
D. H. Ellis ◽  
D. A. Griffiths

Hyaline hyphae of Phomopsis become pigmented when exposed to short periods of light. Pigment was deposited in the form of melanin granules both within the cell wall and within mucilaginous excrescences that were developed irregularly over the hyphal surface. Analysis of the pigment showed it to have properties similar to that of "Dopa" melanin and to pigments previously isolated from fungal cell walls. Lysis of both hyaline and pigmented hyphal walls by means of lytic enzymes was minimal. It is suggested that the major role of melanin in this fungus is the protection of cellular organelles from harmful ionizing radiations.


1976 ◽  
Vol 87 (3) ◽  
pp. 485-488 ◽  
Author(s):  
M. G. Mathews ◽  
W. R. McManus

SummaryGround lucerne was treated with different concentrations of sodium hydroxide (NaOH) and potassium hydroxide (KOH) in a ‘dry crystal’ process, prior to pelleting.Data for feed characteristics and related utilization by sheep fed these diets are reported. NaOH and KOH had effects of different magnitude on the digestibility of cell-wall constituents (CWC). An increase of nitrogen (N) in the cell wall (CWN) induced by tha alkali treatments, resulted in depressed nitrogen digestibility. The residual alkali and high electrolyte intakes produced higher rumen pH, but values were more stable than for sheep fed the control diet.


1983 ◽  
Vol 100 (2) ◽  
pp. 393-400 ◽  
Author(s):  
D. Ben-Ghedalia ◽  
G. Shefet ◽  
Y. Dror

SUMMARYThe digestibility and rumen metabolism of diets containing as 50% of their organic matter (OM), cotton straw (CS) untreated, treated with sodium hydroxide and treated with ozone, were studied in sheep cannulated in the rumen and at the duodenum with simple cannulae. The concentration of total volatile fatty acids (VFA) in the rumen of sheep given the ozone and NaOH treatments was higher than in the untreated diet; however, the VFA profiles were not different. The rumen dehydrogenase activity, suggested to reflect general microbial activity, was higher by 83 and 81% in the ozone and NaOH treatments respectively, than in the untreated.Apparent digestibility of organic matter in the ozone-treated diet was 74·6%; 1·25 and 1·17 times higher than in the untreated and NaOH-treated diets respectively. The calculated values for organic matter and cell-wall digestibilities of the cotton straw in the complete diets were: 30·0, 20·0; 60·8, 60·0; and 39·6, 39·7%, respectively, for the untreated, ozone and NaOH-treated cotton straw. Nitrogen metabolism was not impaired by the presence of formic acid in the ozonated cotton straw; the apparent absorption of N from the intestine and the apparent digestibility of N were higher in the ozonetreated diet than in the untreated or NaOH-treated diet.The proportion of organic matter and cell walls digested in the rumen was higher in the NaOH and ozone treatments than in the untreated, and the possible reasons for that are discussed. A positive relationship was found between cell-wall digestion in the rumen (% of intake) and the rate of passage (% per h) of particulate matter from the rumen. The interpretation of this relationship is discussed in general and in view of the results of the present study.


Sign in / Sign up

Export Citation Format

Share Document