scholarly journals Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro

1972 ◽  
Vol 128 (4) ◽  
pp. 901-911 ◽  
Author(s):  
L. A. Griffiths ◽  
G. E. Smith

1. The metabolism of a group of flavonoid compounds related in structure to apigenin (4′,5,7-trihydroxyflavone) and including apigenin, apiin, naringin, phlorrhizin, acacetin, kaempferol, robinin, chrysin, tectochrysin and 4′,7-dihydroxyflavone, was studied both in vivo after oral administration to the rat, and in vitro in cultures of micro-organisms derived from the intestine of the rat. 2. The rat intestinal microflora is capable of effecting degradation of flavonoid compounds to metabolites observed in the urine after oral administration of the specific flavonoid. 3. All compounds possessing free 5- and 7-hydroxyl groups in the A ring and a free 4′-hydroxyl group in the B ring gave rise to ring-fission products, which included 4′-hydroxyphenylacyl derivatives. 4. On anaerobic incubation in a thioglycollate medium, intestinal micro-organisms can effect flavonoid-ring fission, cleavage of glycosidic bonds and the reduction of double bonds in the side chains of certain metabolites. 5. Two flavonoids (chrysin and tectochrysin) undergo hydroxylation in the 4′-position in vivo but not during incubation with the intestinal microflora in vitro. 6. Observations on the metabolism of other compounds substituted in the 4′-position, e.g. epiafzelechin, pelargonin and the isoflavones, genistein, biochanin A, daidzein and formononetin, by the intestinal microflora of the rat are also reported.

1972 ◽  
Vol 130 (1) ◽  
pp. 141-151 ◽  
Author(s):  
L. A. Griffiths ◽  
G. E. Smith

1. The metabolism of a group of polyphenols related in structure to myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone), including myricetin, myricitrin, 3,4,5-trihydroxyphenylacetic acid, delphinidin, robinetin, tricetin, tricin, malvin and 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone, has been studied both in vivo after oral administration to the rat and in vitro in cultures of micro-organisms derived from the intestine of the rat. 2. It was shown that the rat intestinal microflora are able to degrade compounds of this group to the ring-fission products observed in urine after oral administration of the specific flavonoid. 3. All flavones and flavonols possessing free 5- and 7-hydroxyl groups in the A ring and a free 4′-hydroxyl group in the B ring gave rise to ring-fission products that included 3′,5′-dihydroxyphenylacyl derivatives. 4. The metabolites 3,5-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,5-dihydroxyphenylpropionic acid and 3-hydroxyphenylpropionic acid were isolated and identified by chromatographic and spectral methods. 5. On anaerobic incubation in a thioglycollate medium it was shown that intestinal micro-organisms can effect cleavage of glycosidic bonds, ring fission of certain flavonoid molecules showing 3′,4′,5′-trihydroxyphenyl substitution and dehydroxylation of certain flavonoid metabolites. 6. The urinary excretion of the metabolites 3,5-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid was completely abolished when neomycin-treated rats were used.


1972 ◽  
Vol 52 (2) ◽  
pp. 299-310 ◽  
Author(s):  
D. A. SHUTT ◽  
R. I. COX

SUMMARY The binding affinities and receptor specificity of sheep uterine cytosol for steroid oestrogens and also for weak plant oestrogens of the isoflavone and coumestan groups and some synthetic compounds were studied. The binding affinities of the weak oestrogens fall within a range which has usually been neglected. Relative molar binding (RMB) affinities for the steroid oestrogens confirmed the importance of the phenolic 3-hydroxyl group and the influence of substitutions at C-16 and C-17, as seen with uterine cytosols from other species. Relative molar binding affinities were very much lower when the oestrogens were present as sulphate esters, glucosiduronate and methyl ether derivatives; acetates showed similar RMB affinities to their parent compounds. Phyto-oestrogens were found to compete with oestradiol for binding sites. Coumestrol and miroestrol had the highest RMB affinities of about 5 (oestradiol-17β = 100) when incubated at 25 °C, and values for genistein, equol, daidzein and O-desmethylangolensin lay between 1 and 0·05. The mono-methoxy compounds, biochanin A, formononetin and 4′-methoxy-coumestrol had RMB affinities of less than 0·01. Incubation at 37, 25 and 4 °C showed that RMB affinities were greater at the lower temperatures. Relative molar binding affinities of the phyto-oestrogens in vitro compared with their oestrogenic potencies in vivo showed that the ranking of most of the compounds by these two criteria was similar. Structure-activity correlations were deduced from the results. A similar relationship of RMB affinity to biological potency was also noted for the steroid oestrogens and a homologous series of stilbenediols. The results obtained are relevant to competitive protein-binding analyses and to the mechanism of action of oestrogens and phyto-oestrogens.


2009 ◽  
Vol 191 (11) ◽  
pp. 3685-3697 ◽  
Author(s):  
Kazutake Hirooka ◽  
Yusuke Danjo ◽  
Yuki Hanano ◽  
Satoshi Kunikane ◽  
Hiroshi Matsuoka ◽  
...  

ABSTRACT DNA microarray analysis revealed that transcription of the Bacillus subtilis yetM gene encoding a putative flavin adenine dinucleotide-dependent monooxygenase was triggered by certain flavonoids during culture and was derepressed by disruption of the yetL gene in the opposite orientation situated immediately upstream of yetM, which encodes a putative MarR family transcriptional regulator. In vitro analyses, including DNase I footprinting and gel retardation analysis, indicated that YetL binds specifically to corresponding single sites in the divergent yetL and yetM promoter regions, with higher affinity to the yetM region; the former region overlaps the Shine-Dalgarno sequence of yetL, and the latter region contains a perfect 18-bp palindromic sequence (TAGTTAGGCGCCTAACTA). In vitro gel retardation and in vivo lacZ fusion analyses indicated that some flavonoids (kaempferol, apigenin, and luteolin) effectively inhibit YetL binding to the yetM cis sequence, but quercetin, galangin, and chrysin do not inhibit this binding, implying that the 4-hydroxyl group on the B-ring of the flavone structure is indispensable for this inhibition and that the coexistence of the 3-hydroxyl groups on the B- and C-rings does not allow antagonism of YetL.


Author(s):  
PHISIT POUYFUNG ◽  
SURIYAN SUKATI

Objective: Flavonoids, naturally-occurring compounds in fruits and vegetables, possess anti-coagulant property. However, a very few studies wereattempted to understand how flavonoid structure influences its anti-coagulation property, such as clotting time. In this study, we investigatedstructurally similar flavonoid compounds which differ in the number of hydroxyl groups and compared their anti-coagulation properties.Methods: We selected and evaluated five flavonoid compounds, that is, chrysin, apigenin, luteolin, kaempferol, and quercetin, for their anti-coagulantproperties using in vitro prothrombin time (PT) assays and activated partial thromboplastin time (APTT) assay.Results: Our findings suggested that quercetin, kaempferol, and luteolin showed a significant anti-coagulant effect on APTT (p<0.05) in a dosedependentmanner. The dose of 500 μM quercetin showed potent prolong APTT with 37.43±1.60 s, followed by 500 μM of kaempferol and luteolin(34.63±1.29 s and 4.83±1.56 s, respectively). Furthermore, a combination of 500 μM of quercetin with 0.25 U/ml of heparin demonstrated prolongAPTT (52.16±5.18 s) when compared with individual effects of either 0.25 U/ml heparin (33.4±0.50 s) or 500 μM quercetin (37.43±1.62 s) alone.Conclusion: Our results demonstrated that numbers of the hydroxyl group on flavonoid compounds influence anti-coagulation properties. Inaddition, the prolonged APTT assay results suggested that quercetin, kaempferol, and luteolin could affect factors VIII, IX, XI, and XII of intrinsicpathway. Moreover, the synergistic effect of quercetin further enhances the heparin anti-coagulation effect. Based on our findings, we recommendthat the consumption of vegetables and fruits rich in quercetin, luteolin, and kaempferol could help prevent thrombotic stroke in high-risk patients.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document