scholarly journals An enzyme degrading reduced nicotinamide-adenine dinucleotide in Proteus vulgaris

1978 ◽  
Vol 175 (2) ◽  
pp. 669-674 ◽  
Author(s):  
R Davies ◽  
H K King

Cell-free extracts of a strain of Proteus vulgaris degrade NADH to reduced nicotinamide riboside, adenosine and two molecules of phosphate. The system is weakly active in fresh cell extracts, but activity is increased about 10-fold on rapid heating to 70-100 degrees C. On returning to room temperature, the activity returns rapidly to its initial low value but can be re-activated by again heating to 70-100 degrees C. Reversible activation can also be effected by extremes of pH or by teatment with 8M-urea. Activation appears to be due to reversible changes in conformation of the protein of the enzyme rather than to combination of the enzyme with a heat-labile inhibitor. The active form can be stabilized by addition of PPi. The system, which also possesses 5′-nucleotidase activity not separable from the NADH pyrophosphatase, requires Co2+ (0.4mM) for maximum activity. Although activated at relatively high temperatures, it is not enzymically active until cooled to 50-60 degrees C. It may be purified by affinity chromatography (with NAD+ as ligand) to an activity over 400 times that of the crude cell extract, and yields only one major band on polyacrylamide-gel electrophoresis.

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Anju Pandey ◽  
Milind Naik ◽  
Santosh Kumar Dubey

A pathogenicAeromonas hydrophilastrain An4 was isolated from marine catfish and characterized with reference to its proteolytic and hemolytic activity along with SDS-PAGE profile (sodium dodecyl sulphate-Polyacrylamide gel electrophoresis) of ECPs (extracellular proteins) showing hemolysin (approximately 50 kDa). Agar well diffusion assay using crude cell extract of the bacterial isolate clearly demonstrated antibacterial activity against indicator pathogenic bacteria,Staphylococcus arlettaestrain An1,Acinetobactersp. strain An2,Vibrio parahaemolyticusstrain An3, andAlteromonas aurentiaSE3 showing inhibitory zone >10 mm well comparable to common antibiotics. Further GC-MS analysis of crude cell extract revealed several metabolites, namely, phenolics, pyrrolo-pyrazines, pyrrolo-pyridine, and butylated hydroxytoluene (well-known antimicrobials). Characterization of EPS using FTIR indicated presence of several protein-related amine and amide groups along with peaks corresponding to carboxylic and phenyl rings which may be attributed to its virulent and antibacterial properties, respectively. Besides hemolysin, EPS, and protease,Aeromonas hydrophilastrain An4 also produced several antibacterial metabolites.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 129
Author(s):  
Hao-Kai Li ◽  
Chi-Fong Chang ◽  
Hsuan-Ju Lin ◽  
Jung-Lee Lin ◽  
Yu-Ting Lee ◽  
...  

4-Mercapto-4-methyl-2-pentanone (4MMP), a high-impact aroma compound with the box tree and black currant flavors was first identified in wines and could be released by microbial cysteine-S-conjugate β-lyases from its precursors. In this study, various yeasts and bacteria encoding β-lyases were selected to examine their β-lyase activities. A thiol precursor of 4MMP, cysteine-conjugate of 4MMP (cys-4MMP), was synthesized with a purity of >95% in a relatively environmentally friendly approach, and its chemical structure was confirmed by nuclear magnetic resonance spectroscopy. The β-lyase activities of the crude cell extract from the bacteria and yeast strains for different substrates were examined using a colorimetric method. Shewanella putrefaciens cell extract exhibited the highest β-lyase activity for all tested substrates. Additionally, the optimum pH and temperature for their β-lyase activities were determined. To monitor the conversion efficiency of precursor cys-4MMP to 4MMP, liquid chromatography-mass spectrometry was used. Our data indicate that selected bacteria and yeasts could convert cys-4MMP into 4MMP, and S. putrefaciens exhibited the best conversion yield. This study demonstrated the potential use of microbial cell extracts to produce sulfur-containing aroma compounds such as 4MMP.


2021 ◽  
Author(s):  
Sayyed Hashem Sajjadi ◽  
Shang-Jung Wu ◽  
Vitalijs Zubkovs ◽  
Hossein Ahmadzadeh ◽  
Elaheh K. Goharshadi ◽  
...  

AbstractThe biochemical and biomedical fields hinge on the ability to effectively separate and purify biological macromolecules. Though this need is largely addressed with a variety of chromatographic and electrophoretic purification techniques, such techniques are usually laborious, time-consuming, and often require complex and costly instalments that are inaccessible to most laboratories. In this work, we introduce a simple micro-preparative (MP) method based on polyacrylamide gel electrophoresis (PAGE) to purify biological samples containing proteins, nucleic acids, and complex bioconjugates. Using a conventional vertical slab system, we demonstrate the extraction of purified DNA, proteins, and DNA-protein bioconjugates from their respective mixtures using MP-PAGE. We apply this system to recover DNA from a ladder mixture with yields of up to 90%, compared to the 58% yield obtained using specialized commercial devices. We also demonstrate the purification of folded enhanced yellow fluorescence protein (EYFP) from crude cell extract with 90% purity, comparable to purities achieved using a two-step size exclusion and immobilized metal-ion affinity chromatography purification procedure. Finally, we demonstrate the successful isolation of an EYFP-DNA bioconjugate sample that otherwise could not be processed using the two-step chromatography procedure. MP-PAGE thus offers a rapid and versatile means of purifying a variety of biomolecules without the need for specialized equipment.


2021 ◽  
Vol 7 (1) ◽  
pp. 42
Author(s):  
Deyamira Matuz-Mares ◽  
Oscar Flores-Herrera ◽  
Guadalupe Guerra-Sánchez ◽  
Lucero Romero-Aguilar ◽  
Héctor Vázquez-Meza ◽  
...  

Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.


1999 ◽  
Vol 343 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ajoy BASAK ◽  
Bakary B. TOURÉ ◽  
Claude LAZURE ◽  
Majambu MBIKAY ◽  
Michel CHRÉTIEN ◽  
...  

Proprotein convertase PC4A, a member of the subtilisin/kexin family of serine proteases, was obtained in enzymically active form following expression of vaccinia virus recombinant rat (r)PC4A in GH4C1 cells. It displayed maximal activity at pH 7.0 and a Ca2+ concentration of 2.0 mM. Using PC4-specific antibodies, Western blot analysis of the medium revealed a major band at ≈ 54 kDa, corresponding to the molecular size of mature rPC4A. Among the various peptidyl-[4-methylcoumarin 7-amide (MCA)] substrates tested, the one that was preferred the most by rPC4A was acetyl (Ac)-Arg-Lys-Lys-Arg-MCA, which is cleaved 9 times faster (as judged from Vmax/Km measurements) than the best furin and PC1 substrate, pGlu-Arg-Thr-Lys-Arg-MCA. Recombinant rPC4A, along with human (h)furin and hPC1, cleaved a 17-amino-acid synthetic peptide, YQTLRRRVKR↓ SLVVPTD (where ↓ denotes site of cleavage, and the important basic residues are shown in bold), encompassing the junction between the putative pro-segment of rPC4A and the active enzyme, suggesting a possible auto-activation of the enzyme. In an effort to identify potential physiological substrates for PC4, studies were performed with pro-[insulin-growth-factor (IGF)]-derived synthetic peptides, namely Ac-PAKSAR↓ SVRA (IGF-I66-75) and Ac-PAKSER↓ DVST (IGF-II63-72), as well as two lysine mutants [(IGF-I66-75Lys70) and (IGF-II63-72Lys67)]. Unlike PC1 and furin, rPC4A cleaved efficiently both IGF-I66-75 and IGF-II63-72, suggesting a possible role of PC4 in the maturation of IGF-I and -II. In contrast, the peptides with a position 2 (P2) lysine mutation, IGF-I66-75Lys70 and IGF-II63-72Lys67, were cleaved more efficiently by PC1 and furin compared with rPC4A. Furthermore, using synthetic peptides containing the processing sites of pituitary adenylate-cyclase-activating polypeptide (PACAP)-38, we were able to confirm that, of the two testicular enzymes PC4 and PC7, PC4 is the best candidate enzyme for maturation of PACAP. Our data suggest that rPC4A is a functionally active convertase, with a substrate specificity somewhat different from that of other convertases, namely KXXR↓ (where X denotes any other residue). As expected, p-chloromercuribenzoic acid and metal chelators such as EDTA, EGTA and trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid inhibit the proteolytic activity of rPC4A, whereas it is activated by dithiothreitol. PC4A was also inhibited by transition-metal ions (Cu2+>Hg2+>Zn2+ Ni2+>Co2+), as well as by small peptide semicarbazones (SCs), such as Arg-Lys-Lys-Arg-SC (Ki 0.75 μM) and Arg-Ser-Lys-Arg-SC (Ki 11.4 μM).


2012 ◽  
Vol 27 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Juliusz Bianga ◽  
Guillaume Ballihaut ◽  
Christophe Pécheyran ◽  
Zahia Touat ◽  
Hugues Preud'homme ◽  
...  

1987 ◽  
Vol 65 (10) ◽  
pp. 921-924 ◽  
Author(s):  
Gilles Paradis ◽  
Jean Y. Dubé ◽  
Pierre Chapdelaine ◽  
Roland R. Tremblay

Poly(A)+ RNA was isolated from human prostatic tissue and translated in vitro in a rabbit reticulocyte lysate translation assay. Acid phosphatase labeled with [35S]methionine was immunoprecipitated with an antibody against seminal plasma acid phosphatase. Two-dimensional polyacrylamide gel electrophoresis of the immunoprecipitate, followed by fluorography, revealed the presence of two spots (one major and one minor), both having a molecular mass of 43 kilodaltons (kDa) and an isoelectric point higher than mature acid phosphatase. Addition of canine pancreatic membranes to the translation assay resulted in the formation of four immunoprecipitable spots with molecular masses ranging from 43 to 49 kDa on one-dimensional gels. These spots probably represent acid phosphatases containing one to four core sugar groups, since after the addition of endoglycosidase H the molecular mass heterogeneity was abolished and we observed only one major band with a molecular mass (41 kDa) slightly lower than the ones of the primary translation product. These results suggest that human prostatic acid phosphatases are synthesized as two 43-kDa preproteins, which are further processed to 41-kDa proteins by removal of their signal peptide. Heterogeneity of the native protein arises mostly from glycosylation at four sites and not from differences in the amino acid sequence of the various forms.


1973 ◽  
Vol 51 (11) ◽  
pp. 1551-1555 ◽  
Author(s):  
Tony C. M. Seah ◽  
A. R. Bhatti ◽  
J. G. Kaplan

At any stage of growth of a wild-type bakers' yeast, some 20% of the catalatic activity of crude extracts is not precipitable by means of antibody prepared against the typical catalase (catalase T), whose purification and properties have been previously described. Some of this catalatic activity is due to the presence of an atypical catalase (catalase A), a heme protein, with a molecular weight estimated as 170 000 – 190 000, considerably lower than that of the usual catalases (225 000 – 250 000). Preparations of catalase A were found to be homogeneous in the analytical ultracentrifuge and in polyacrylamide gel electrophoresis. Its subunit molecular weight, determined from its iron content, was 46 500, virtually the same as that of the major band obtained in gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native protein is tetrameric. Its specific activity is in the range of those reported for other typical catalases.


Sign in / Sign up

Export Citation Format

Share Document