scholarly journals The transcriptional repressor gene Mad3 is a novel target for regulation by E2F1

2003 ◽  
Vol 370 (1) ◽  
pp. 307-313 ◽  
Author(s):  
Elizabeth J. FOX ◽  
Stephanie C. WRIGHT

Mad family proteins are transcriptional repressors that antagonize the activity of the c-Myc proto-oncogene product. Mad3 is expressed specifically during the S-phase of the cell cycle in both proliferating and differentiating cells, suggesting that its biological function is probably linked to processes that occur during this period. To determine the mechanisms that regulate the cell-cycle-specific transcription of Mad3, we used reporter gene assays in stably transfected fibroblasts. We show that the activation of Mad3 at the G1—S boundary is mediated by a single E2F (E2 promoter binding factor)-binding site within the 5′-flanking region of the gene. Mutation of this element eliminated transcriptional activation at S-phase, suggesting that the positively acting E2F proteins play a role in Mad3 regulation. Using electrophoretic mobility-shift assays and chromatin immunoprecipitation, we show that E2F1 binds to the Mad3 5′-flanking region both in vitro and in vivo. We thus identify Mad3 as a novel transcriptional target of E2F1.

2018 ◽  
Vol 11 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Limin Liu ◽  
Peng Zhang ◽  
Ming Bai ◽  
Lijie He ◽  
Lei Zhang ◽  
...  

Abstract Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-β, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α–HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-β and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
A Raza ◽  
Y Maheshwari ◽  
HD Preisler

The proliferative characteristics of myeloid leukemias were defined in vivo after intravenous infusions of bromodeoxyuridine (BrdU) in 40 patients. The percentage of S-phase cells obtained from the biopsies (mean, 20%) were significantly higher (P = .00003) than those determined from the bone marrow (BM) aspirates (mean, 9%). The post- BrdU infusion BM aspirates from 40 patients were incubated with tritiated thymidine in vitro. These double-labeled slides were utilized to determine the duration of S-phase (Ts) in myeloblasts and their total cell cycle time (Tc). The Ts varied from four to 49 hours (mean, 19 hours; median, 17 hours). Similarly, there were wide variations in Tc of individual patients ranging from 16 to 292 hours (mean, 93 hours; median, 76 hours). There was no relationship between Tc and the percentage of S-phase cells, but there was a good correlation between Tc and Ts (r = .8). Patients with relapsed acute nonlymphocytic leukemia (ANLL) appeared to have a longer Ts and Tc than those studied at initial diagnosis. A subgroup of patients at either extreme of Tc were identified who demonstrated clinically documented resistance in response to multiple courses of chemotherapy. We conclude that Ts and Tc provide additional biologic information that may be valuable in understanding the variations observed in the natural history of ANLL.


1992 ◽  
Vol 12 (8) ◽  
pp. 3490-3498 ◽  
Author(s):  
N Hosokawa ◽  
K Hirayoshi ◽  
H Kudo ◽  
H Takechi ◽  
A Aoike ◽  
...  

Transcriptional activation of human heat shock protein (HSP) genes by heat shock or other stresses is regulated by the activation of a heat shock factor (HSF). Activated HSF posttranslationally acquires DNA-binding ability. We previously reported that quercetin and some other flavonoids inhibited the induction of HSPs in HeLa and COLO 320DM cells, derived from a human colon cancer, at the level of mRNA accumulation. In this study, we examined the effects of quercetin on the induction of HSP70 promoter-regulated chloramphenicol acetyltransferase (CAT) activity and on the binding of HSF to the heat shock element (HSE) by a gel mobility shift assay with extracts of COLO 320DM cells. Quercetin inhibited heat-induced CAT activity in COS-7 and COLO 320DM cells which were transfected with plasmids bearing the CAT gene under the control of the promoter region of the human HSP70 gene. Treatment with quercetin inhibited the binding of HSF to the HSE in whole-cell extracts activated in vivo by heat shock and in cytoplasmic extracts activated in vitro by elevated temperature or by urea. The binding of HSF activated in vitro by Nonidet P-40 was not suppressed by the addition of quercetin. The formation of the HSF-HSE complex was not inhibited when quercetin was added only during the binding reaction of HSF to the HSE after in vitro heat activation. Quercetin thus interacts with HSF and inhibits the induction of HSPs after heat shock through inhibition of HSF activation.


1995 ◽  
Vol 311 (3) ◽  
pp. 769-773 ◽  
Author(s):  
M A Bevilacqua ◽  
M C Faniello ◽  
P D′Agostino ◽  
B Quaresima ◽  
M T Tiano ◽  
...  

In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf.


2009 ◽  
Vol 21 (1) ◽  
pp. 194
Author(s):  
N. Mtango ◽  
K. Latham

After fertilization, cell division is required for development during the transition from a zygote to an embryo. Degradation of oocyte transcripts, transcriptional activation of the nucleus, and chromatin remodeling occur during early cleavage divisions. Defects in cell cycle regulation decrease the ability of embryo to grow and can be detrimental. In the rhesus monkey, embryos derived by fertilization of oocytes from prepubertal females or oocytes collected during the non-breeding season undergo cleavage arrest (Schramm and Bavister 1994; Zheng et al. 2001). We employed the Primate Embryo Gene Expression Resource (PREGER; www.Preger.org) to examine the expression pattern of 70 mRNAs involved in cell cycle regulation in rhesus monkey oocytes and embryos derived from different stimulation protocols (non-stimulated, FSH stimulated-in vitro matured, and FSH and hCG stimulated-in vivo matured; Mtango and Latham 2007, 2008; Zheng et al. 2005). The resource encompasses a large, biologically rich set of more than 170 samples with 1 to 4 oocytes or embryos which were constructed using the quantitative amplification and dot blotting method. This method entails the direct lysis of small numbers of oocytes or embryos in a reverse transcription buffer supplemented with nonionic detergent, thereby avoiding RNA losses associated with organic extractions (Brady and Iscove 1993). We find that aberrant regulation of cell cycle regulatory gene mRNAs is a prominent feature of oocytes and embryos of compromised developmental potential (FSH stimulated-moderate reduced potential and NS-severely compromised potential). Of the 56 mRNAs for which expression was detected, there was significant aberrations related to oocyte and embryo quality in the expression of more than half (n = 30), P < 0.05), 26 of 30 display significant differences in metaphase II stage oocytes, 20 being altered in FSH stimulated females and 24 of 30 being altered in NS females. The comparison between monkey and previously reported mouse array expression data (Zeng et al. 2004) revealed striking differences between 2 species. These data provide novel information about disruptions in the expression of genes controlling the cell cycle in oocytes and embryos of compromised developmental potential. We thank Bela Patel, Malgorzata McMenamin, and Ann Marie Paprocki for their technical assistance. We also thank R. Dee Schramm for his contribution to the development of the PREGER resource. This work was supported by National Centers for Research Resources Grant RR-15253.


1999 ◽  
Vol 73 (5) ◽  
pp. 4208-4219 ◽  
Author(s):  
Juinn-Lin Liu ◽  
Ying Ye ◽  
Zheng Qian ◽  
Yongyi Qian ◽  
Dennis J. Templeton ◽  
...  

ABSTRACT Marek’s disease virus, an avian alphaherpesvirus, has been used as an excellent model to study herpesvirus oncogenesis. One of its potential oncogenes, MEQ, has been demonstrated to transform a rodent fibroblast cell line, Rat-2, in vitro by inducing morphological transformation and anchorage- and serum-independent growth and by protecting cells from apoptosis induced by tumor necrosis factor alpha, C2-ceramide, UV irradiation, or serum deprivation. In this report, we show that there is a cell cycle-dependent colocalization of MEQ protein and cyclin-dependent kinase 2 (CDK2) in coiled bodies and the nucleolar periphery during the G1/S boundary and early S phase. To our knowledge, this is the first demonstration that CDK2 is found to localize to coiled bodies. Such an in vivo association and possibly subsequent phosphorylation may result in the cytoplasmic translocation of MEQ protein. Indeed, MEQ is expressed in both the nucleus and the cytoplasm during the G1/S boundary and early S phase. In addition, we were able to show in vitro phosphorylation of MEQ by CDKs. We have mapped the CDK phosphorylation site of MEQ to be serine 42, a residue in the proximity of the bZIP domain. An indirect-immunofluorescence study of the MEQ S42D mutant, in which the CDK phosphorylation site was mutated to a charged residue, reveals more prominent cytoplasmic localization. This lends further support to the notion that the translocation of MEQ is regulated by phosphorylation. Furthermore, phosphorylation of MEQ by CDKs drastically reduces the DNA binding activity of MEQ, which may in part account for the lack of retention of MEQ oncoprotein in the nucleus. Interestingly, the localization of CDK2 in coiled bodies and the nucleolar periphery is observed only in MEQ-transformed Rat-2 cells, implicating MEQ in modifying the subcellular localization of CDK2. Taken together, our data suggest that there is a novel reciprocal modulation between the herpesvirus oncoprotein MEQ and CDK2.


1996 ◽  
Vol 8 (6) ◽  
pp. 935 ◽  
Author(s):  
AW Schuetz ◽  
DG Whittingham ◽  
R Snowden

The cell cycle characteristics of mouse cumulus granulosa cells were determined before, during and following their expansion and mucification in vivo and in vitro. Cumulus-oocyte complexes (COC) were recovered from ovarian follicles or oviducts of prepubertal mice previously injected with pregnant mare serum gonadotrophin (PMSG) or a mixture of PMSG and human chorionic gonadotrophin (PMSG+hCG) to synchronize follicle differentiation and ovulation. Cell cycle parameters were determined by monitoring DNA content of cumulus cell nuclei, collected under rigorously controlled conditions, by flow cytometry. The proportion of cumulus cells in three cell cycle-related populations (G0/G1; S; G2/M) was calculated before and after exposure to various experimental conditions in vivo or in vitro. About 30% of cumulus cells recovered from undifferentiated (compact) COC isolated 43-45 h after PMSG injections were in S phase and 63% were in G0/G1 (2C DNA content). Less than 10% of the cells were in the G2/M population. Cell cycle profiles of cumulus cells recovered from mucified COC (oviducal) after PMSG+hCG-induced ovulation varied markedly from those collected before hCG injection and were characterized by the relative absence of S-phase cells and an increased proportion of cells in G0/G1. Cell cycle profiles of cumulus cells collected from mucified COC recovered from mouse ovarian follicles before ovulation (9-10 h after hCG) were also characterized by loss of S-phase cells and an increased G0/G1 population. Results suggest that changes in cell cycle parameters in vivo are primarily mediated in response to physiological changes that occur in the intrafollicular environment initiated by the ovulatory stimulus. A similar lack of S-phase cells was observed in mucified cumulus cells collected 24 h after exposure in vitro of compact COC to dibutyryl cyclic adenosine monophosphate (DBcAMP), follicle-stimulating hormone or epidermal growth factor (EGF). Additionally, the proportion of cumulus cells in G2/M was enhanced in COC exposed to DBcAMP, suggesting that cell division was inhibited under these conditions. Thus, both the G1-->S-phase and G2-->M-phase transitions in the cell cycle appear to be amenable to physiological regulation. Time course studies revealed dose-dependent changes in morphology occurred within 6 h of exposure in vitro of COC to EGF or DBcAMP. Results suggest that the disappearance of the S-phase population is a consequence of a decline in the number of cells beginning DNA synthesis and exit of cells from the S phase following completion of DNA synthesis. Furthermore, loss of proliferative activity in cumulus cells appears to be closely associated with COC expansion and mucification, whether induced under physiological conditions in vivo or in response to a range of hormonal stimuli in vitro. The observations indicate that several signal-transducing pathways mediate changes in cell cycle parameters during cumulus cell differentiation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 396-396
Author(s):  
Liang Hu ◽  
Sherif Ibrahim ◽  
Cynthia Liu ◽  
Jeffrey Skaar ◽  
Michelle Pagano ◽  
...  

Abstract Although it has been generally accepted that hypercoagulability contributes to enhancing tumor growth via generation of thrombin (Cancer Cell10:355, 2006), it has not been rigorously proven, nor has the mechanism been established at the cell cycle level. Previous studies have employed thrombin-treated tumor cell lines in vitro and in vivo. In vitro studies were performed in the presence of serum which contains a panoply of growth factors. In vivo studies have used huge non-pathologic concentrations of tumor cells injected into the flank, organ or blood of a mouse. In these situations, tumor growth could be a result of thrombin-induced angiogenesis. We therefore employed a transgenic mouse prostate cancer model (TRAMP) programmed to develop prostate CA over a period of 140–175 days. We treated these animals with thrombin to induce hypercoagulability or hirudin to inhibit endogenous thrombin production, to determine whether thrombin regulates this process independent of angiogenesis. Repetitive thrombin injection enhanced prostate tumor volume 6–8 fold (p&lt;0.04). Repetitive hirudin decreased tumor volume 13–24 fold (p&lt;0.04) via its effect on generated endogenous thrombin, n=6. Thrombin enhanced the production of several vascular growth factors and receptors 2.5 – 3 fold in the liver (VEGF, KDR, ANG-2, Tie2, GRO-1, CD31) and enhanced angiogenesis in the liver, n=3–4. Thrombin had no effect on tumor angiogenesis. Thus, the thrombin-induced spontaneous tumor growth was independent of angiogenesis. We next turned our attention to cell cycle regulators in serum-starved (72 hr) Go-synchronized LNcap prostate CA cells, employing Brdu and Propidium iodide staining. Addition of thrombin (0.5 u/ml) or its PAR-1 receptor agonist, TFLLRN (100 uM) had the same effect as androgen containing serum, inducing cells to leave Go, enter G1 and progress to S-phase. At 8 hrs the number of S-phase cells increased dramatically for both the serum (29 fold) as well as thrombin-treated cells (48 fold), n=3. Similar observations were noted in a Glioblastoma cell line, T98G. We further analyzed the effect of thrombin by performing immunoblots on cell cycle components mediated during cell growth and proliferation. In synchronized Go cells, levels of p27Kip1, a cyclin-dependent kinase inhibitor are high, while levels of cyclins D1 and A, the activation subunits for cyclin-dependent kinases are low. Both thrombin or serum addition led to down-regulation of p27Kip1 with concomitant induction of Skp2, the E3 ubiquitin ligase for p27Kip1. Cyclins D1 and A are induced by similar kinetics, indicating entry into S-phase by 8 hrs. Since p27Kip1 appears to be a rate-limiting down-regulator of the cell cycle (absent with high tumor grade and predicts poor prognosis), we confirmed its role by testing the effect of thrombin or TFLLRN by transfecting p27Kip1 in LNcap cells. This transfection completely prevented the cell cycle stimulation induced by these agonists. A similar approach was used with Skp2 knock down (KD), a negative down-regulator of p27Kip1. KD of Skp2 (over expressed in numerous cancers) completely prevented cell cycle progression induced by thrombin/TFLLRN. MiRNA 222 (upregulated in many cancers) is another down-regulator of p27Kip1. Further analysis following thrombin treatment revealed a robust upregulation at 4 and 8 hrs, providing further proof for the role of thrombin in down-regulating p27Kip1 and stimulating tumor cell entrance into S-phase. Thus, 1) Thrombin enhances spontaneous prostate cell growth in vivo in the absence of enhanced angiogenesis; 2) Thrombin activates the tumor cell cycle by stimulating the down-regulation of p27Kip1 through the upregulation of Skp2 and MiRNA 222.


Sign in / Sign up

Export Citation Format

Share Document