scholarly journals Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1

2003 ◽  
Vol 371 (3) ◽  
pp. 857-866 ◽  
Author(s):  
Byoung MOON ◽  
Noreen DUDDY ◽  
Louis RAGOLIA ◽  
Najma BEGUM

Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1G) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1G in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1G or with PP-1G mutants in which site-1 (S1) Ser48 and site-2 (S2) Ser67 residues were substituted with Ala. Cells expressing wild-type and PP-1G mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60min heat shock at 45°C, followed by analysis of [14C]glucose incorporation into glycogen at 37°C. PP-1G S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1G S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3β (GSK-3β) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3β phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1G S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1G S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3-kinase/Akt-dependent GSK-3β inactivation as well as phosphoinositide 3-kinase-independent PP-1 activation.

2006 ◽  
Vol 291 (5) ◽  
pp. E1031-E1037 ◽  
Author(s):  
Kei Sakamoto ◽  
David E. Arnolds ◽  
Nobuharu Fujii ◽  
Henning F. Kramer ◽  
Michael F. Hirshman ◽  
...  

The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr308 or basal and contraction-stimulated glycogen synthase kinase-3β (GSK-3β) Ser9 phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr308 phosphorylation and GSK-3α Ser21 phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3α Ser21 phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Nivaldo Ferreira do Nascimento ◽  
Rafaela Manchin Bertolini ◽  
Lucia Soares Lopez ◽  
Laura Satiko Okada Nakaghi ◽  
Paulo Sérgio Monzani ◽  
...  

Summary Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.


1988 ◽  
Vol 106 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
L A Mizzen ◽  
W J Welch

Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.


Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4237-4246 ◽  
Author(s):  
Jia Chen ◽  
Haiyang Tang ◽  
Nissim Hay ◽  
Jingsong Xu ◽  
Richard D. Ye

In neutrophils, the phosphoinositide 3-kinase/Akt signaling cascade is involved in migration, degranulation, and O2− production. However, it is unclear whether the Akt kinase isoforms have distinct functions in neutrophil activation. Here we report functional differences between the 2 major Akt isoforms in neutrophil activation on the basis of studies in which we used individual Akt1 and Akt2 knockout mice. Akt2−/− neutrophils exhibited decreased cell migration, granule enzyme release, and O2− production compared with wild-type and Akt1−/− neutrophils. Surprisingly, Akt2 deficiency and pharmacologic inhibition of Akt also abrogated phorbol ester-induced O2− production, which was unaffected by treatment with the phosphoinositide 3-kinase inhibitor LY294002. The decreased O2− production in Akt2−/− neutrophils was accompanied by reduced p47phox phosphorylation and its membrane translocation, suggesting that Akt2 is important for the assembly of phagocyte nicotinamide adenine dinucleotide phosphate oxidase. In wild-type neutrophils, Akt2 but not Akt1 translocated to plasma membrane upon chemoattractant stimulation and to the leading edge in polarized neutrophils. In the absence of Akt2, chemoattractant-induced Akt protein phosphorylation was significantly reduced. These results demonstrate a predominant role of Akt2 in regulating neutrophil functions and provide evidence for differential activation of the 2 Akt isoforms in neutrophils.


1986 ◽  
Vol 6 (1) ◽  
pp. 90-96 ◽  
Author(s):  
T McClanahan ◽  
K McEntee

Two Saccharomyces cerevisiae genes isolated in a differential hybridization screening for DNA damage regulation (DDR genes) were also transcriptionally regulated by heat shock treatment. A 0.45-kilobase transcript homologous to the DDRA2 gene and a 1.25-kilobase transcript homologous to the DDR48 gene accumulated after exposure of cells to 4-nitroquinoline-1-oxide (NQO; 1 to 1.5 microgram/ml) or brief heat shock (20 min at 37 degrees C). The DDRA2 transcript, which was undetectable in untreated cells, was induced to high levels by these treatments, and the DDR48 transcript increased more than 10-fold as demonstrated by Northern hybridization analysis. Two findings argue that dual regulation of stress-responsive genes is not common in S. cerevisiae. First, two members of the heat shock-inducible hsp70 family of S. cerevisiae, YG100 and YG102, were not induced by exposure to NQO. Second, at least one other DNA-damage-inducible gene, DIN1, was not regulated by heat shock treatment. We examined the structure of the induced RNA homologous to DDRA2 after heat shock and NQO treatments by S1 nuclease protection experiments. Our results demonstrated that the DDRA2 transcript initiates equally frequently at two sites separated by 5 base pairs. Both transcriptional start sites were utilized when cells were exposed to either NQO or heat shock treatment. These results indicate that DDRA2 and DDR48 are members of a unique dually regulated stress-responsive family of genes in S. cerevisiae.


1998 ◽  
Vol 18 (11) ◽  
pp. 6624-6633 ◽  
Author(s):  
Bin He ◽  
Yong-Hong Meng ◽  
Nahid F. Mivechi

ABSTRACT Heat shock transcription factor 1 (HSF-1) activates the transcription of heat shock genes in eukaryotes. Under normal physiological growth conditions, HSF-1 is a monomer. Its transcriptional activity is repressed by constitutive phosphorylation. Upon activation, HSF-1 forms trimers, acquires DNA binding activity, increases transcriptional activity, and appears as punctate granules in the nucleus. In this study, using bromouridine incorporation and confocal laser microscopy, we demonstrated that newly synthesized pre-mRNAs colocalize to the HSF-1 punctate granules after heat shock, suggesting that these granules are sites of transcription. We further present evidence that glycogen synthase kinase 3β (GSK-3β) and extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) participate in the down regulation of HSF-1 transcriptional activity. Transient increases in the expression of GSK-3β facilitate the disappearance of HSF-1 punctate granules and reduce hsp-70 transcription after heat shock. We have also shown that ERK is the priming kinase for GSK-3β. Taken together, these results indicate that GSK-3β and ERK MAPK facilitate the inactivation of activated HSF-1 after heat shock by dispersing HSF-1 from the sites of transcription.


2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


1984 ◽  
Vol 4 (4) ◽  
pp. 591-598
Author(s):  
J Cappello ◽  
C Zuker ◽  
H F Lodish

The Dictyostelium genome contains 40 copies of a 4.7-kilobase repetitive and apparently transposable DNA sequence (DIRS-1) and about 250 smaller elements that appear to be deletions or rearrangements of DIRS-1. Transcripts of these sequences are induced during differentiation and also by heat shock treatment of growing cells. We showed that one such cloned element, pB41.6 (2.5 kilobases) contains a nucleotide sequence identical to the Drosophila consensus heat shock promotor. To test whether this sequence might indeed control the expression of DIRS-1-related RNAs, we have cloned this genomic segment into yeast cells. In yeast cells, 41.6 directs synthesis of a 1.7-kilobase RNA that is induced at least 10-fold by heat shock. Transcription initiates at about 124 bases 3' of the putative promotor sequence and terminates within the 41.6 insert. A 381-base-pair subclone that contains the putative promotor sequence is sufficient to induce the heat shock response of 41.6 in yeast cells.


Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Ken Suzuki ◽  
Ryszard T. Smolenski ◽  
Jay Jayakumar ◽  
Bari Murtuza ◽  
Nigel J. Brand ◽  
...  

Background —Graft survival after skeletal myoblast transplantation is affected by various pathological processes caused by environmental stress. Heat shock is known to afford protection of several aspects of cell metabolism and function. We hypothesized that prior heat shock treatment of graft cells would improve their survival after cell transplantation. Methods and Results —L6 rat skeletal myoblasts expressing β-galactosidase (β-gal) were subjected to heat shock (42°C, 1 hour). Increased expression of heat shock protein 72 was detected 24 hours later in the heat-shocked cells. After hypoxia-reoxygenation in vitro, lactate dehydrogenase leakage was significantly attenuated in the heat-shocked cells; in addition, the percentage of early apoptosis was lower in this group measured by flow cytometry with annexin V staining. For the in vivo study, 1×10 6 heat-shocked (hsCTx) or normal-cultured (CTx) myoblasts were infused into the explanted rat hearts through the coronary artery followed by heterotopic heart transplantation. β-gal activity was significantly higher in the hsCTx group after cell transplantation, with an estimated 8×10 6 surviving cells per heart in the hsCTx group and 5×10 6 cells in the CTx group on day 28. Discrete loci of grafted cells were globally observed in the myocardium of the hsCTx and CTx groups, with a higher frequency in the hsCTx group. Surviving myoblasts occasionally differentiated into myotubes and had integrated with the native cardiomyocytes. Conclusions —Heat-shocked skeletal myoblasts demonstrated improved tolerance to hypoxia-reoxygenation insult in vitro and enhanced survival when grafted into the heart. Heat shock treatment could be useful in improving graft cell survival in cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document