scholarly journals A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants

2003 ◽  
Vol 373 (2) ◽  
pp. 403-408 ◽  
Author(s):  
Nadya G. GURSKAYA ◽  
Arkady F. FRADKOV ◽  
Natalia I. POUNKOVA ◽  
Dmitry B. STAROVEROV ◽  
Maria E. BULINA ◽  
...  

We have cloned an unusual colourless green fluorescent protein (GFP)-like protein from Aequorea coerulescens (acGFPL). The A. coerulescens specimens displayed blue (not green) luminescence, and no fluorescence was detected in these medusae. Escherichia coli expressing wild-type acGFPL showed neither fluorescence nor visible coloration. Random mutagenesis generated green fluorescent mutants of acGFPL, with the strongest emitters found to contain an Glu222→Gly (E222G) substitution, which removed the evolutionarily invariant Glu222. Re-introduction of Glu222 into the most fluorescent random mutant, named aceGFP, converted it into a colourless protein. This colourless aceGFP-G222E protein demonstrated a novel type of UV-induced photoconversion, from an immature non-fluorescent form into a green fluorescent form. Fluorescent aceGFP may be a useful biological tool, as it was able to be expressed in a number of mammalian cell lines. Furthermore, expression of a fusion protein of ‘humanized’ aceGFP and β-actin produced a fluorescent pattern consistent with actin distribution in mammalian cells.

2005 ◽  
Vol 4 (4) ◽  
pp. 437-445 ◽  
Author(s):  
Reetta Riikonen ◽  
Heli Matilainen ◽  
Nina Rajala ◽  
Olli Pentikäinen ◽  
Mark Johnson ◽  
...  

The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not strong enough to overcome binding of wild type gp64 to the unknown cellular receptor(s) on the surface of α2 integrin-expressing cells (CHO-α2β1) or enhance the viral uptake. After treatment of these cells with phospholipase C, internalization of all viruses was blocked or decreased significantly. However, one of the RKK displaying viruses, AcGFP(K)gp64, was still able to internalize into CHO-α2β1 cells, although at a lower level as compared to non-treated cells. This may indicate the possible utilization of a PLC independent alternative route via, in this case, the α2β1 integrin.


2000 ◽  
Vol 113 (15) ◽  
pp. 2679-2683 ◽  
Author(s):  
K. Sugaya ◽  
M. Vigneron ◽  
P.R. Cook

RNA polymerase II is a multi-subunit enzyme responsible for transcription of most eukaryotic genes. It associates with other complexes to form enormous multifunctional ‘holoenzymes’ involved in splicing and polyadenylation. We wished to study these different complexes in living cells, so we generated cell lines expressing the largest, catalytic, subunit of the polymerase tagged with the green fluorescent protein. The tagged enzyme complements a deficiency in tsTM4 cells that have a temperature-sensitive mutation in the largest subunit. Some of the tagged subunit is incorporated into engaged transcription complexes like the wild-type protein; it both resists extraction with sarkosyl and is hyperphosphorylated at its C terminus. Remarkably, subunits bearing such a tag can be incorporated into the active enzyme, despite the size and complexity of the polymerizing complex. Therefore, these cells should prove useful in the analysis of the dynamics of transcription in living cells.


1999 ◽  
Vol 112 (16) ◽  
pp. 2705-2714
Author(s):  
E.M. Burns ◽  
L. Christopoulou ◽  
P. Corish ◽  
C. Tyler-Smith

We have measured the mitotic loss rates of mammalian chromosomes in cultured cells. The green fluorescent protein (GFP) gene was incorporated into a non-essential chromosome so that cells containing the chromosome fluoresced green, while those lacking it did not. The proportions of fluorescent and non-fluorescent cells were measured by fluorescence activated cell sorter (FACS) analysis. Loss rates ranged from 0.005% to 0.20% per cell division in mouse LA-9 cells, and from 0.02% to 0.40% in human HeLa cells. The rate of loss was elevated by treatment with aneugens, demonstrating that the system rapidly identifies agents which induce chromosome loss in mammalian cells.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Yíngyún Caì ◽  
Masaharu Iwasaki ◽  
Brett Beitzel ◽  
Shuīqìng Yú ◽  
Elena Postnikova ◽  
...  

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000–300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1851-1855 ◽  
Author(s):  
Carole L. Thomas ◽  
Andrew J. Maule

To investigate the process of tubule formation for the cauliflower mosaic virus movement protein (CaMV MP), the green fluorescent protein (GFP) was fused to the MP to provide a vital marker for MP location after expression in insect cells. In contrast to the long tubular structures seen previously following baculovirus-based expression of the wild-type MP, the fusion protein produced only aggregates of fluorescing material in the cytoplasm. However, by co-expressing wild-type MP and GFP–MP, or by engineering their co-accumulation by introducing a foot-and-mouth disease virus 2A cleavage sequence between GFP and MP, long GFP-fluorescing tubules were formed. The experiments suggest that the presence of GFP at the N or C terminus of the tubule-forming domain of the CaMV MP places steric constraints upon the aggregation of the MP into a tubule but that this can be overcome by providing wild-type protein for inclusion in the aggregate.


2018 ◽  
Vol 194 ◽  
pp. 29-39 ◽  
Author(s):  
Fatemeh Motevalli ◽  
Azam Bolhassani ◽  
Shilan Hesami ◽  
Sepideh Shahbazi

1998 ◽  
Vol 83 (11) ◽  
pp. 3936-3942
Author(s):  
Guiming Cai ◽  
Toshimi Michigami ◽  
Takehisa Yamamoto ◽  
Natsuo Yasui ◽  
Kenichi Satomura ◽  
...  

Hypophosphatasia is associated with a defect of the tissue-nonspecific alkaline phosphatase (TNSALP) gene. The onset and clinical severity are usually correlated in hypophosphatasia; patients with perinatal hypophosphatasia die approximately at the time of birth. In contrast, we describe a male neonatal patient with hypophosphatasia who had no respiratory problems and survived. He was compound heterozygous for the conversion of Phe to Leu at codon 310 (F310L) and the deletion of a nucleotide T at 1735 (delT1735), causing the frame shift with the result of the addition of 80 amino acids at the C-terminal of the protein. Because the C-terminal portion of TNSALP is known to be important for TNSALP to bind to the plasma membrane, the localization of wild-type and mutated TNSALP proteins was analyzed using green fluorescent protein chimeras. The expression vectors containing the complementary DNA of fusion proteins consisting of signal peptide, green fluorescent protein, and wild-type or mutated TNSALP, caused by delT1735 or F310L mutation, were introduced transiently or stably in Saos-2 cells. The delT1735 mutant failed to localize at the cell surface membrane, whereas the wild-type and the F310L mutants were located in the plasma membrane and cytoplasm. The assay for enzymatic activity of TNSALP revealed that the delT1735 mutant lost the activity and that the F310L mutant exhibited an enzymatic activity level that was 72% of the normal level. The F310L mutation was also detected in another neonatal patient with relatively mild (nonlethal) hypophosphatasia (reported in J Clin Endocrinol Metab, 81:4458–4461, 1996), suggesting that residual ALP activity of the F310L mutant contributes to the less severe phenotype. The patient is unique, with respect to a discrepancy between onset and clinical severity in hypophosphatasia.


Sign in / Sign up

Export Citation Format

Share Document