scholarly journals Allowed N-glycosylation sites on the Kv1.2 potassium channel S1–S2 linker: implications for linker secondary structure and the glycosylation effect on channel function

2003 ◽  
Vol 375 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Jing ZHU ◽  
Itaru WATANABE ◽  
Amanda POHOLEK ◽  
Matthew KOSS ◽  
Barbara GOMEZ ◽  
...  

N-glycosylation is a post-translational modification that plays a role in the trafficking and/or function of some membrane proteins. We have shown previously that N-glycosylation affected the function of some Kv1 voltage-gated potassium (K+) channels [Watanabe, Wang, Sutachan, Zhu, Recio-Pinto and Thornhill (2003) J. Physiol. (Cambridge, U.K.) 550, 51–66]. Kv1 channel S1–S2 linkers vary in length but their N-glycosylation sites are at similar relative positions from the S1 or S2 membrane domains. In the present study, by a scanning mutagenesis approach, we determined the allowed N-glycosylation sites on the Kv1.2 S1–S2 linker, which has 39 amino acids, by engineering N-glycosylation sites and assaying for glycosylation, using their sensitivity to glycosidases. The middle section of the linker (54% of linker) was glycosylated at every position, whereas both end sections (46% of linker) near the S1 or S2 membrane domains were not. These findings suggested that the middle section of the S1–S2 linker was accessible to the endoplasmic reticulum glycotransferase at every position and was in the extracellular aqueous phase, and presumably in a flexible conformation. We speculate that the S1–S2 linker is mostly a coiled-loop structure and that the strict relative position of native glycosylation sites on these linkers may be involved in the mechanism underlying the functional effects of glycosylation on some Kv1 K+ channels. The S3–S4 linker, with 16 amino acids and no N-glycosylation site, was not glycosylated when an N-glycosylation site was added. However, an extended linker, with an added N-linked site, was glycosylated, which suggested that the native linker was not glycosylated due to its short length. Thus other ion channels or membrane proteins may also have a high glycosylation potential on a linker but yet have similarly positioned native N-glycosylation sites among isoforms. This may imply that the native position of the N-glycosylation site may be important if the carbohydrate tree plays a role in the folding, stability, trafficking and/or function of the protein.

2020 ◽  
Vol 295 (35) ◽  
pp. 12343-12352 ◽  
Author(s):  
Ryo Iwagishi ◽  
Rika Tanaka ◽  
Munenosuke Seto ◽  
Tomoyo Takagi ◽  
Naoko Norioka ◽  
...  

Ectodomain shedding is a post-translational modification mechanism by which the entire extracellular domain of membrane proteins is liberated through juxtamembrane processing. Because shedding rapidly and irreversibly alters the characteristics of cells, this process is properly regulated. However, the molecular mechanisms governing the propensity of membrane proteins to shedding are largely unknown. Here, we present evidence that negatively charged amino acids within the stalk region, an unstructured juxtamembrane region at which shedding occurs, contribute to shedding susceptibility. We show that two activated leukocyte cell adhesion molecule (ALCAM) protein variants produced by alternative splicing have different susceptibilities to ADAM metallopeptidase domain 17 (ADAM17)-mediated shedding. Of note, the inclusion of a stalk region encoded by a 39-bp-long alternative exon conferred shedding resistance. We found that this alternative exon encodes a large proportion of negatively charged amino acids, which we demonstrate are indispensable for conferring the shedding resistance. We also show that the introduction of negatively charged amino acids into the stalk region of shedding-susceptible ALCAM variant protein attenuates its shedding. Furthermore, we observed that negatively charged amino acids residing in the stalk region of Erb-B2 receptor tyrosine kinase 4 (ERBB4) are indispensable for its shedding resistance. Collectively, our results indicate that negatively charged amino acids within the stalk region interfere with the shedding of multiple membrane proteins. We conclude that the composition of the stalk region determines the shedding susceptibility of membrane proteins.


1997 ◽  
Vol 326 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Gilles MILLAT ◽  
Roseline FROISSART ◽  
Irène MAIRE ◽  
Dominique BOZON

Iduronate sulphatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to evaluate the functional importance of each N-glycosylation site, and of the cysteine-84 residue. IDS mutant cDNAs, lacking one of the eight potential N-glycosylation sites, were expressed in COS cells. Although each of the potential sites was used, none of the eight glycosylation sites appeared to be essential for lysosomal targeting. Another important sulphatase co- or post-translational modification for generating catalytic activity involves the conversion of a cysteine residue surrounded by a conserved sequence C-X-P-S-R into a 2-amino-3-oxopropionic acid residue [Schmidt, Selmer, Ingendoh and von Figura (1995) Cell 82, 271–278]. This conserved cysteine, located at amino acid position 84 in IDS, was replaced either by an alanine (C84A) or by a threonine (C84T) using site-directed mutagenesis. C84A and C84T mutant cDNAs were expressed either in COS cells or in human lymphoblastoid cells deleted for the IDS gene. C84A had a drastic effect both for IDS processing and for catalytic activity. The C84T mutation produced a small amount of mature forms but also abolished enzyme activity, confirming that the cysteine residue at position 84 is required for IDS activity.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7314
Author(s):  
Subash C. Pakhrin ◽  
Kiyoko F. Aoki-Kinoshita ◽  
Doina Caragea ◽  
Dukka B. KC

Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community.


1993 ◽  
Vol 289 (3) ◽  
pp. 681-686 ◽  
Author(s):  
M M P Hermans ◽  
H A Wisselaar ◽  
M A Kroos ◽  
B A Oostra ◽  
A J J Reuser

N-linked glycosylation is one of the important events in the post-translational modification of human lysosomal alpha-glucosidase. Phosphorylation of mannose residues ensures efficient transport of the enzyme to the lysosomes via the mannose 6-phosphate receptor. The primary structure of lysosomal alpha-glucosidase, as deduced from the cDNA sequence, indicates that there are seven potential glycosylation sites. We have eliminated these sites individually by site-directed mutagenesis and thereby demonstrated that all seven sites are glycosylated. The sites at Asn-882 and Asn-925 were found to be located in a C-terminal propeptide which is cleaved off during maturation. Evidence is presented that at least two of the oligosaccharide side chains of human lysosomal alpha-glucosidase are phosphorylated. Elimination of six of the seven sites does not disturb enzyme synthesis or function. However, removal of the second glycosylation site at Asn-233 interferes dramatically with the formation of mature enzyme. The mutant precursor is synthesized normally and assembles in the endoplasmic reticulum, but immunoelectron microscopy reveals a deficiency of alpha-glucosidase in the Golgi complex and in the more distal compartments of the lysosomal transport pathway.


2020 ◽  
Vol 27 (3) ◽  
pp. 178-186 ◽  
Author(s):  
Ganesan Pugalenthi ◽  
Varadharaju Nithya ◽  
Kuo-Chen Chou ◽  
Govindaraju Archunan

Background: N-Glycosylation is one of the most important post-translational mechanisms in eukaryotes. N-glycosylation predominantly occurs in N-X-[S/T] sequon where X is any amino acid other than proline. However, not all N-X-[S/T] sequons in proteins are glycosylated. Therefore, accurate prediction of N-glycosylation sites is essential to understand Nglycosylation mechanism. Objective: In this article, our motivation is to develop a computational method to predict Nglycosylation sites in eukaryotic protein sequences. Methods: In this article, we report a random forest method, Nglyc, to predict N-glycosylation site from protein sequence, using 315 sequence features. The method was trained using a dataset of 600 N-glycosylation sites and 600 non-glycosylation sites and tested on the dataset containing 295 Nglycosylation sites and 253 non-glycosylation sites. Nglyc prediction was compared with NetNGlyc, EnsembleGly and GPP methods. Further, the performance of Nglyc was evaluated using human and mouse N-glycosylation sites. Results: Nglyc method achieved an overall training accuracy of 0.8033 with all 315 features. Performance comparison with NetNGlyc, EnsembleGly and GPP methods shows that Nglyc performs better than the other methods with high sensitivity and specificity rate. Conclusion: Our method achieved an overall accuracy of 0.8248 with 0.8305 sensitivity and 0.8182 specificity. Comparison study shows that our method performs better than the other methods. Applicability and success of our method was further evaluated using human and mouse N-glycosylation sites. Nglyc method is freely available at https://github.com/bioinformaticsML/ Ngly.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


2021 ◽  
Author(s):  
Koshi Imami ◽  
Matthias Selbach ◽  
Yasushi Ishihama

SummaryMitochondrial ribosomes are specialized to translate the 13 membrane proteins encoded in the mitochondrial genome, but it is challenging to quantify mitochondrial translation products due to their hydrophobic nature. Here, we introduce a proteomic method that combines biochemical isolation of mitochondria with pulse stable isotope labeling by amino acids in cell culture (pSILAC). Our method provides the highest protein coverage (quantifying 12 out of the 13 inner-membrane proteins; average 2-fold improvement over previous studies) with the shortest measurement time. We applied this method to uncover the global picture of (post)translational regulation of both mitochondrial- and nuclear-encoded proteins involved in the assembly of protein complexes that mediate oxidative phosphorylation (OXPHOS). The results allow us to infer the assembly order of complex components and/or partners, as exemplified by complex III. This method should be applicable to study mitochondrial translation programs in many contexts, including oxidative stress and mitochondrial disease.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S61-S61 ◽  
Author(s):  
Kazu Haino-Fukushima ◽  
Xuxi Fan ◽  
Shouka Nakamura

The vitelline coat (VC) lysin of Tegula, a marine molluscan genus, is released from the acrosome of sperm during fertilisation and can lyse the VC of only the same species. The lytic action of this lysin against the VC is not an enzymatic reaction, but a stoichiometric and irreversible one (Haino-Fukushima, 1974).The VC of Tegula pfeifferi consists of glycoproteins containing sulphated polysaccharides, which account for roughly two-thirds of the entire weight of the VC. The presence of a large quantity of polysaccharides in the VC had prevented rapid progress in the analysis of its protein components. Last year, we succeeded in a complete solubilisation of the VC by boiling for a long time in 1% SDS solution, and determined the cDNA sequence coding for a mature 41 kDa glycoprotein, which appears to be the major component of the VC from the results of SDS-polyacrylamide gel electrophoresis (PAGE). The cDNA, referred to as vcp41, comprises 1072 base pairs and contains one open reading frame with a sequence for 319 amino acids containing 19 amino acids of a signal peptide. The deduced amino acid sequence has five N-glycosylation sites and ten cysteine residues. It seems that almost 7 kDa in this 41kDa glycoprotein is polysaccharide constituents (Fan & Haino-Fukushima, 1998).


2008 ◽  
Vol 294 (4) ◽  
pp. G1052-G1059 ◽  
Author(s):  
Pijun Wang ◽  
Soichiro Hata ◽  
Yansen Xiao ◽  
John W. Murray ◽  
Allan W. Wolkoff

Organic anion transport protein 1a1 (oatp1a1), a prototypical member of the oatp family of highly homologous transport proteins, is expressed on the basolateral (sinusoidal) surface of rat hepatocytes. The organization of oatp1a1 within the plasma membrane has not been well defined, and computer-based models have predicted possible 12- as well as 10-transmembrane domain structures. Which of oatp1a1's four potential N-linked glycosylation sites are actually glycosylated and their influence on transport function have not been investigated in a mammalian system. In the present study, topology of oatp1a1 in the rat hepatocyte plasma membrane was examined by immunofluorescence analysis using an epitope-specific antibody designed to differentiate a 10- from a 12-transmembrane domain model. To map glycosylation sites, the asparagines at the each of the four N-linked glycosylation consensus sites were mutagenized to glutamines. Mutagenized oatp1a1 constructs were expressed in HeLa cells, and effects on protein expression and transport activity were assessed. These studies revealed that oatp1a1 is a 12-transmembrane-domain protein in which the second and fifth extracellular loops are glycosylated at asparagines 124, 135, and 492, whereas the potential glycosylation site at asparagine 62 is not utilized, consistent with its position in a transmembrane domain. Constructs in which more than one glycosylation site were eliminated had reduced transport activity but not necessarily reduced transporter expression. This was in accord with the finding that fully unglycosylated oatp1a1 was well expressed but located intracellularly with limited transport ability as a consequence of its reduced cell surface expression.


2000 ◽  
Vol 68 (12) ◽  
pp. 6777-6784 ◽  
Author(s):  
Roberto La Valle ◽  
Silvia Sandini ◽  
Maria Jesus Gomez ◽  
Francesca Mondello ◽  
Giulia Romagnoli ◽  
...  

ABSTRACT A 65-kDa mannoprotein (CaMp65) has long been studied as a major, immunodominant antigen of the human opportunistic pathogenCandida albicans. An expression library of C. albicans was screened with serum from mice immunized with ScMp65 (ScW10), a Saccharomyces cerevisiae recombinant protein of about 48 kDa. This serum recognized the CaMp65 from a cell wall extract of C. albicans. After cloning and sequencing of the relevant C. albicans cDNA, an open reading frame encoding a protein of 379 amino acids was identified. Its deduced amino acid sequence showed regions of identity with all previously characterized tryptic fragments of CaMp65, as well as with the corresponding regions of ScMp65. A prepeptide of 32 amino acids with signal peptidase and Kex2 cleavage sites as well as a high number of potential O-glycosylation sites but no N-glycosylation sites or GPI anchor were observed in sequence studies of CaMp65. A putative adhesin RGD sequence was also present in the C-terminal region of the molecule. This triplet was absent in the ScMp65. The relevant gene (designatedCaMP65) was localized to chromosome R of C. albicans as determined by pulse-field gel electrophoresis. Northern blot analysis demonstrated that gene transcription was heat inducible and associated with germ-tube formation by the fungus. A recombinant, His6-tagged protein (rCaMp65) was expressed inEscherichia coli under an inducible promoter. After purification by nickel-chelate affinity chromatography, the recombinant product was detected as a 47-kDa protein band in immunoblots with the anti-ScMp65 serum, as well as with CaMp65-specific monoclonal antibodies. Both ScMp65 and CaMp65 were assayed for antigenic stimulation in cultures of peripheral blood mononuclear cells (PBMC) from 10 unselected human donors. While ScMp65 was substantially nonstimulatory, both rCaMp65 and the native CaMp65 were equally able to induce lymphoproliferation of the PBMC from all the donors. In addition, a number of CD4+ T-cell clones were generated using a C. albicans mannoprotein fraction as an antigenic stimulant. Several of these clones specifically responded to both the native and the recombinant C. albicans Mp65 but not to ScMp65. Thus, the recombinant Mp65 of C. albicans retains antigenicity and, as such, could be a valid, standardized reagent for serodiagnostic and immunological studies.


Sign in / Sign up

Export Citation Format

Share Document