Three new components contained in the vitelline coat of Tegula pfeifferi

Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S61-S61 ◽  
Author(s):  
Kazu Haino-Fukushima ◽  
Xuxi Fan ◽  
Shouka Nakamura

The vitelline coat (VC) lysin of Tegula, a marine molluscan genus, is released from the acrosome of sperm during fertilisation and can lyse the VC of only the same species. The lytic action of this lysin against the VC is not an enzymatic reaction, but a stoichiometric and irreversible one (Haino-Fukushima, 1974).The VC of Tegula pfeifferi consists of glycoproteins containing sulphated polysaccharides, which account for roughly two-thirds of the entire weight of the VC. The presence of a large quantity of polysaccharides in the VC had prevented rapid progress in the analysis of its protein components. Last year, we succeeded in a complete solubilisation of the VC by boiling for a long time in 1% SDS solution, and determined the cDNA sequence coding for a mature 41 kDa glycoprotein, which appears to be the major component of the VC from the results of SDS-polyacrylamide gel electrophoresis (PAGE). The cDNA, referred to as vcp41, comprises 1072 base pairs and contains one open reading frame with a sequence for 319 amino acids containing 19 amino acids of a signal peptide. The deduced amino acid sequence has five N-glycosylation sites and ten cysteine residues. It seems that almost 7 kDa in this 41kDa glycoprotein is polysaccharide constituents (Fan & Haino-Fukushima, 1998).

2018 ◽  
Vol 475 (16) ◽  
pp. 2577-2592 ◽  
Author(s):  
Markus Ralser

Until recently, prebiotic precursors to metabolic pathways were not known. In parallel, chemistry achieved the synthesis of amino acids and nucleotides only in reaction sequences that do not resemble metabolic pathways, and by using condition step changes, incompatible with enzyme evolution. As a consequence, it was frequently assumed that the topological organisation of the metabolic pathway has formed in a Darwinian process. The situation changed with the discovery of a non-enzymatic glycolysis and pentose phosphate pathway. The suite of metabolism-like reactions is promoted by a metal cation, (Fe(II)), abundant in Archean sediment, and requires no condition step changes. Knowledge about metabolism-like reaction topologies has accumulated since, and supports non-enzymatic origins of gluconeogenesis, the S-adenosylmethionine pathway, the Krebs cycle, as well as CO2 fixation. It now feels that it is only a question of time until essential parts of metabolism can be replicated non-enzymatically. Here, I review the ‘accidents’ that led to the discovery of the non-enzymatic glycolysis, and on the example of a chemical network based on hydrogen cyanide, I provide reasoning why metabolism-like non-enzymatic reaction topologies may have been missed for a long time. Finally, I discuss that, on the basis of non-enzymatic metabolism-like networks, one can elaborate stepwise scenarios for the origin of metabolic pathways, a situation that increasingly renders the origins of metabolism a tangible problem.


2011 ◽  
Vol 345 ◽  
pp. 423-428
Author(s):  
Ying Ning Sun ◽  
Yu Zhao ◽  
Wei Yu Wang

In silicon cloning, we obtained ILF2 gene by using human ILF2 gene sequence (NM_004515) to be probe. Sequence analysis showed that the in silicon cloned cDNA was 1662 base pairs long with an open reading frame (ORF) containing 1173 nucleotides encoding a protein of 390 amino acids. 5’-untranslated region (UTR) was 74 bp, and 3’-UTR was 413 bp. A comparison of the sheep ILF2 with cow, horse, human, mouse, xenopus and zebra fish ILF2 amino acids had 96%, 91%, 91%, 81%, 61%, and 54% identity. The PI was 5.19, and molecular weight of the deduced protein was 43 050.12 Da. The pig ILF2 contained a RGG-rich single-stranded RNA-binding domain and a DZF zinc-finger nucleic acid binding domain. This study laid a foundation for further analysis of structure, expression and regulation of ILF2 gene in sheep.


2001 ◽  
Vol 69 (5) ◽  
pp. 3159-3163 ◽  
Author(s):  
Hans Lindmark ◽  
Martin Nilsson ◽  
Bengt Guss

ABSTRACT The gene fnz from Streptococcus equisubspecies zooepidemicus encodes a cell surface protein that binds fibronectin (Fn). Fifty tested isolates of S. equi subspecies equi all contain DNA sequences with similarity to fnz. This work describes the cloning and sequencing of a gene, designated fne, with similarity tofnz from two S. equi subspeciesequi isolates. The DNA sequences were found to be identical in the two strains, and sequence comparison of the fne andfnz genes revealed only minor differences. However, one base deletion was found in the middle of the fne gene and eight base pairs downstream of the altered reading frame there is a stop codon. An Fn-binding protein was purified from the growth medium of a subspecies equi culture. Determination of the NH2-terminal amino acid sequence and molecular mass, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that the purified protein is the gene product of the 5′-terminal half of fne. Fn-binding activity has earlier only been found in the COOH-terminal half of FNZ. By the use of a purified recombinant protein containing the NH2 half of FNZ, we provide here evidence that this half of the protein also harbors an Fn-binding domain.


1997 ◽  
Vol 14 (5) ◽  
pp. 843-851 ◽  
Author(s):  
Aohua Qian ◽  
George Hyatt ◽  
Andres Schanzer ◽  
Rohan Hazra ◽  
Abigail S. Hackam ◽  
...  

AbstractThere is increasing evidence that GABAC receptors are composed of GABA ρ subunits. In this study, we compared the properties of native GABAC receptors with those of receptors composed of a GABA ρ subunit. A homologue of the GABA ρ gene was cloned from a white perch (Roccus americana) retinal cDNA library. The clone (perch-s) has an open reading frame of 1422 nucleotide base pairs and encodes a predicted protein of 473 amino acids. It is highly homologous to GABA ρ subunits cloned from human and rat retinas. The receptors (perch-s receptor) expressed by this gene in Xenopus oocytes show properties similar to those of the GABAC receptors present on white perch retinal neurons. GABA induced a sustained response that had a reversal potential of –27.1 +minus; 3.6 mV. The EC50 for the response was 1.74 +− 1.25 μM, a value similar to that reported for GABAC receptors. Pharmacologically, the responses were bicuculline insensitive and not modulated by either diazepam or pentobarbital as is the case for GABAc receptors. There were, however, some distinct differences between native GABAc and perch-s receptors. I4AA acts as a partial agonist on perch-s receptors whereas it is strictly an antagonist on native GABAC receptors. Picrotoxin inhibition is noncompetitive on perch-s receptors, but both competitive and noncompetitive on GABAC receptors. We conclude that GABAC receptors are formed by GABA p subunits but that native GABAc receptors probably consist of a mixture of GABA ρ subunits.


2002 ◽  
Vol 70 (4) ◽  
pp. 1807-1815 ◽  
Author(s):  
Kaname Masuda ◽  
Masami Yoshioka ◽  
Daisuke Hinode ◽  
Ryo Nakamura

ABSTRACT Arginine carboxypeptidase was isolated from the cytoplasm of Porphyromonas gingivalis 381 and purified by DEAE-Sephacel column chromatography, followed by high-performance liquid chromatography on DEAE-5PW and TSK G2000SWXL. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the presence of three major bands at 42, 33, and 32 kDa with identical N-terminal sequences. By Western blotting analysis and immunoelectron microscopy, the arginine carboxypeptidase was found to be widely distributed in the cytoplasm and on the surface of the outer membrane. The open reading frame corresponding to the N-terminal amino acids of the arginine carboxypeptidase was detected by a search of the sequence of the P. gingivalis W83 genome. This sequence showed homology with mammalian carboxypeptidases (M, N, and E/H) and included a zinc-binding region signature, suggesting that the enzyme is a member of the zinc carboxypeptidase family. The purified enzyme was inhibited by EGTA, o-phenanthroline, dl-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and some metal ions, such as Cu2+, Zn2+, and Cd2+. On the other hand, Co2+ activated the enzyme. The enzyme released arginine and/or lysine from biologically active peptides containing these amino acids at the C terminus but did not cleave substrates when proline was present at the penultimate position. These results indicate that the arginine carboxypeptidase produced by P. gingivalis is an exo type of metallocarboxypeptidase. This enzyme may function to release arginine in collaboration with an arginine aminopeptidase, e.g., Arg-gingipain, to obtain specific amino acids from host tissues during the growth of P. gingivalis.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jerome A. ◽  
S. K. Singh ◽  
S. K. Agarwal ◽  
Mohini Saini ◽  
Ashwin Raut

Pregnancy-Associated Glycoproteins (PAGs) are trophoblastic proteins belonging to the Aspartic proteinase family secreted by different placental cells of many mammalian species. They play a pivotal role in placentogenesis, foetomaternal unit remodeling, and implantation. The identification of the genes encoding those proteins will be helpful to unravel the intricate embryogenomic functions during pregnancy establishment. Considering importance of these proteins, the present study was undertaken to characterize the pregnancy associated glycoprotein-1 gene of buffalo. An 1181 base pairs buffalo Pregnancy-Associated Glycoprotein PAG-1 gene was PCR amplified from the RNA obtained from the fetal cotyledons. BLAST analysis of the buffalo PAG-1 sequence retrieved a total of 20 cattle, 5 goat, and 4 sheep PAG sequences, exhibiting more than 80% similarity. Buffalo PAG-1 gene contained an uninterrupted open reading frame of 1140 base pairs encoding 380 amino acids that possess a 15 amino acid signal peptide and mature peptide of 365 amino acids. The phylogenetic study of the buffalo PAG-1 gene revealed buffalo PAG-1 is more related to cattle, goat, and sheep PAG-1 sequences. By this study characterization of buffalo PAG-1 gene and its evolutionary relationship was deduced for the first time.


1999 ◽  
Vol 181 (21) ◽  
pp. 6814-6821 ◽  
Author(s):  
Vanida Nopponpunth ◽  
Worachart Sirawaraporn ◽  
Patricia J. Greene ◽  
Daniel V. Santi

ABSTRACT The genes for dihydropteroate synthase of Mycobacterium tuberculosis and Mycobacterium leprae were isolated by hybridization with probes amplified from the genomic DNA libraries. DNA sequencing revealed an open reading frame of 840 bp encoding a protein of 280 amino acids for M. tuberculosisdihydropteroate synthase and an open reading frame of 852 bp encoding a protein of 284 amino acids for M. leprae dihydropteroate synthase. The dihydropteroate synthases were expressed under control of the T5 promoter in a dihydropteroate synthase-deficient strain ofEscherichia coli. Using three chromatography steps, we purified both M. tuberculosis and M. lepraedihydropteroate synthases to >98% homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed molecular masses of 29 kDa for M. tuberculosis dihydropteroate synthase and 30 kDa for M. leprae dihydropteroate synthase. Gel filtration of both enzymes showed a molecular mass of ca. 60 kDa, indicating that the native enzymes exist as dimers of two identical subunits. Steady-state kinetic parameters for dihydropteroate synthases from bothM. tuberculosis and M. leprae were determined. Representative sulfonamides and dapsone were potent inhibitors of the mycobacterial dihydropteroate synthases, but the antimycobacterial agent p-aminosalicylate, a putative dihydropteroate synthase inhibitor, was a poor inhibitor of the enzymes.


1990 ◽  
Vol 10 (5) ◽  
pp. 2111-2121 ◽  
Author(s):  
A J Blasband ◽  
K T Rogers ◽  
X R Chen ◽  
J C Azizkhan ◽  
D C Lee

We have determined the complete nucleotide sequence of rat transforming growth factor alpha (TGF alpha) mRNA and characterized the six exons that encode this transcript. These six exons span approximately 85 kilobases of genomic DNA, with exons 1 to 3 separated by particularly large introns. What had previously been thought to represent a species-specific difference in the size of the TGF alpha precursor (proTGF alpha) is now shown to be due to microheterogeneity in the splicing of exons 2 and 3. This results from a tandem duplication of the acceptor CAG and gives rise to two alternate forms (159 and 160 amino acids) of the integral membrane precursor. Exon 6, which encodes the 3' untranslated region of TGF alpha mRNA, also encodes, on the opposite strand, a small (approximately 200-nucleotide) transcript whose sequence predicts an open reading frame of 51 amino acids. Expression of this latter transcript does not appear to be coregulated with that of TGF alpha mRNA. Primer extension and S1 nuclease analyses of authentic TGF alpha transcripts revealed two major and multiple minor 5' ends which span more than 200 base pairs of DNA in a G + C-rich region that lacks canonical CCAAT or TATA sequences. The 5' ends of six independently derived cDNAs localized to five different sites in this same region. Restriction fragments that overlap these transcription start sites and extend approximately 300 base pairs in the 5' direction faithfully promote transcription in vitro with HeLa cell nuclear extracts. In addition, they direct the expression of the bacterial chloramphenicol acetyltransferase gene in transient-transfection assays.


1990 ◽  
Vol 10 (5) ◽  
pp. 2111-2121
Author(s):  
A J Blasband ◽  
K T Rogers ◽  
X R Chen ◽  
J C Azizkhan ◽  
D C Lee

We have determined the complete nucleotide sequence of rat transforming growth factor alpha (TGF alpha) mRNA and characterized the six exons that encode this transcript. These six exons span approximately 85 kilobases of genomic DNA, with exons 1 to 3 separated by particularly large introns. What had previously been thought to represent a species-specific difference in the size of the TGF alpha precursor (proTGF alpha) is now shown to be due to microheterogeneity in the splicing of exons 2 and 3. This results from a tandem duplication of the acceptor CAG and gives rise to two alternate forms (159 and 160 amino acids) of the integral membrane precursor. Exon 6, which encodes the 3' untranslated region of TGF alpha mRNA, also encodes, on the opposite strand, a small (approximately 200-nucleotide) transcript whose sequence predicts an open reading frame of 51 amino acids. Expression of this latter transcript does not appear to be coregulated with that of TGF alpha mRNA. Primer extension and S1 nuclease analyses of authentic TGF alpha transcripts revealed two major and multiple minor 5' ends which span more than 200 base pairs of DNA in a G + C-rich region that lacks canonical CCAAT or TATA sequences. The 5' ends of six independently derived cDNAs localized to five different sites in this same region. Restriction fragments that overlap these transcription start sites and extend approximately 300 base pairs in the 5' direction faithfully promote transcription in vitro with HeLa cell nuclear extracts. In addition, they direct the expression of the bacterial chloramphenicol acetyltransferase gene in transient-transfection assays.


1999 ◽  
Vol 73 (6) ◽  
pp. 5123-5131 ◽  
Author(s):  
Blossom Damania ◽  
Mengtao Li ◽  
Joong-Kook Choi ◽  
Louis Alexander ◽  
Jae U. Jung ◽  
...  

ABSTRACT Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus that is most closely related to the human Kaposi’s sarcoma-associated herpesvirus (KSHV). We have identified a distinct open reading frame at the left end of RRV and designated it R1. The position of the R1 gene is equivalent to that of the saimiri transforming protein (STP) of herpesvirus saimiri (HVS) and of K1 of KSHV, other members of the gamma-2 or rhadinovirus subgroup of herpesviruses. The R1 sequence revealed an open reading frame encoding a product of 423 amino acids that was predicted to contain an extracellular domain, a transmembrane domain, and a C-terminal cytoplasmic tail reflective of a type I membrane-bound protein. The predicted structural motifs of R1, including the presence of immunoreceptor tyrosine-based activation motifs, resembled those in K1 of KSHV but were distinct from those of STP. R1 sequences from four independent isolates from three different macaque species revealed 0.95 to 7.3% divergence over the 423 amino acids. Variation was located predominantly within the predicted extracellular domain. The R1 protein migrated at 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was extensively glycosylated. Tagged R1 protein was localized to the cytoplasmic and plasma membranes of transfected cells. Expression of the R1 gene in Rat-1 fibroblasts induced morphologic changes and focus formation, and injection of R1-expressing cells into nude mice induced the formation of multifocal tumors. A recombinant herpesvirus in which the STP oncogene of HVS was replaced by R1 immortalized T lymphocytes to interleukin-2-independent growth. These results indicate that R1 is an oncogene of RRV.


Sign in / Sign up

Export Citation Format

Share Document