scholarly journals The effect of tumour-bearing on 2-deoxy[U-14C]glucose uptake in normal and neoplastic tissues in the rat

1988 ◽  
Vol 253 (2) ◽  
pp. 603-606 ◽  
Author(s):  
A M Rofe ◽  
C S Bourgeois ◽  
R Bais ◽  
R A Conyers

The extent to which normal and neoplastic tissues of the rate take up glucose was assessed by the 2-deoxy[U-14C]glucose tracer technique. Measurements of glucose uptake were made over 40 min in anaesthetized rats under conditions where the blood glucose concentration was constant. In fed tumour-bearing rats, the relative rates of glucose uptake per g wet wt. of tissue were tumour (100), small intestine (72), brain (61), heart (61), spleen (50), lung (42), adipose tissue (11) and muscle (8). Normal tissues of the fed tumour-bearing rats had decreased rates of glucose uptake as compared with the same tissues in fed non-tumour-bearing control rats. Blood glucose concentrations were similar in both groups, but insulin concentrations were decreased in tumour-bearing rats. Starvation decreased the rates of glucose uptake by normal tissues in both control and tumour-bearing rats, but the difference between the fed and starved states was greater in the control rats. Starvation did not decrease glucose uptake by the tumour. On an organ basis, the tumour (12-14% of body wt.) took up 4 times more glucose than did muscle (40% of body wt.).

2000 ◽  
Vol 279 (6) ◽  
pp. E1271-E1277 ◽  
Author(s):  
Mary Courtney Moore ◽  
Po-Shiuan Hsieh ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg · kg−1 · min−1 via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 ± 6 and 43 ± 12 μU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 ± 13 and 120 ± 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 ± 3 vs. 46 ± 5 mg · kg−1 · min−1 in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 ± 0.4 vs. 3.1 ± 0.4 mg · kg−1 · min−1) and fractional extraction (0.03 ± 0.01 vs. 0.07 ± 0.01) were smaller ( P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 ± 0.4 vs. 6.9 ± 0.4 mg · kg−1 · min−1, P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.


1991 ◽  
Vol 71 (5) ◽  
pp. 1807-1812 ◽  
Author(s):  
I. Tabata ◽  
F. Ogita ◽  
M. Miyachi ◽  
H. Shibayama

The effects of low blood glucose concentration during low-intensity prolonged physical exercise on the hypothalamus-pituitary-adrenocortical axis were investigated in healthy young men. In experiment 1, six subjects who had fasted for 14 h performed bicycle exercise at 50% of their maximal O2 uptake until exhaustion. At the end of the exercise, adrenocorticotropic hormone (ACTH) and cortisol increased significantly. However, this hormonal response was totally abolished when the same subjects exercised at the same intensity while blood glucose concentrations were maintained at the preexercise level. In experiment 2, in addition to ACTH and cortisol, the possible changes in plasma concentration of corticotropin-releasing factor (CRF) were investigated during exercise of the same intensity performed by six subjects. As suggested by a previous study (Tabata et al. Clin. Physiol. Oxf. 4: 299–307, 1984), when the blood glucose concentrations decreased to less than 3.3 mM, plasma concentrations of CRF, ACTH, and cortisol showed a significant increase. At exhaustion, further increases were observed in plasma CRF, ACTH, and cortisol concentrations. These results demonstrate that decreases in blood glucose concentration trigger the pituitary-adrenocortical axis to enhance secretion of ACTH and cortisol during low-intensity prolonged exercise in humans. The data also might suggest that this activation is due to increased concentration of CRF, which was shown to increase when blood glucose concentration decreased to a critical level of 3.3 mM.


2000 ◽  
Vol 278 (1) ◽  
pp. G98-G104 ◽  
Author(s):  
C. K. Rayner ◽  
H. S. Park ◽  
S. M. Doran ◽  
I. M. Chapman ◽  
M. Horowitz

Recent studies suggest that the interaction between small intestinal nutrient stimulation and the blood glucose concentration is important in the regulation of gastric motility and appetite. The purpose of this study was to determine whether the effects of cholecystokinin octapeptide (CCK-8) on antropyloric motility and appetite are influenced by changes in the blood glucose concentration within the normal postprandial range. Seven healthy volunteers were studied on 4 separate days. A catheter incorporating a sleeve sensor was positioned across the pylorus, and the blood glucose was stabilized at either 4 mmol/l (2 days) or 8 mmol/l (2 days). After the desired blood glucose had been maintained for 90 min, an intravenous infusion of either CCK-8 (2 ng ⋅ kg− 1 ⋅ min− 1) or saline (control) was given for 60 min. Thirty minutes after the infusion began, the catheter was removed and subjects drank 400 ml of water with guar gum before being offered a buffet meal. The amount of food consumed (kcal) was quantified. The order of the studies was randomized and single-blinded. There were fewer antral waves at a blood glucose of 8 than at 4 mmol/l during the 90-min period before the infusions ( P < 0.05) and during the first 30 min of CCK-8 or saline infusion ( P = 0.07). CCK-8 suppressed antral waves ( P < 0.05), stimulated isolated pyloric pressure waves (IPPWs) ( P < 0.01), and increased basal pyloric pressure ( P < 0.005) compared with control. During administration of CCK-8, basal pyloric pressure ( P < 0.01), but not the number of IPPWs, was greater at a blood glucose of 8 mmol/l than at 4 mmol/l. CCK-8 suppressed the energy intake at the buffet meal ( P < 0.01), with no significant difference between the two blood glucose concentrations. We conclude that the acute effect of exogenous CCK-8 on basal pyloric pressure, but not appetite, is modulated by physiological changes in the blood glucose concentration.


1998 ◽  
Vol 275 (4) ◽  
pp. G797-G804 ◽  
Author(s):  
J. M. Andrews ◽  
C. K. Rayner ◽  
S. Doran ◽  
G. S. Hebbard ◽  
M. Horowitz

We evaluated the effects of varying blood glucose concentration within the normal postprandial range and its interaction with small intestinal nutrients on antropyloric motility and appetite. Eight healthy males (19–40 yr) underwent paired studies, with a blood glucose level of 5 or 8 mmol/l. Manometry and visual analog scales were used to assess motility and appetite, during fasting and intraduodenal lipid infusion (1.5 kcal/min). In the fasting state, antral waves were suppressed at 8 mmol/l compared with 5 mmol/l ( P = 0.018). However, pyloric motility was no different between the two blood glucose concentrations. Hunger was no different at 5 mmol/l compared with 8 mmol/l, but fullness was greater at 8 mmol/l ( P = 0.01). During intraduodenal lipid infusion, antral waves were suppressed ( P < 0.035) and isolated pyloric pressure waves (IPPWs) were stimulated ( P < 0.02) compared with during the fasting state, with no difference between blood glucose concentrations, although the temporal patterning of IPPWs varied between blood glucose concentrations. The amplitude of IPPWs was greater at 5 mmol/l compared with 8 mmol/l ( P < 0.001), and hunger decreased at 8 mmol/l compared with 5 mmol/l ( P = 0.02). We conclude that “physiological” hyperglycemia modifies gastric motor and sensory function and that synergy exists between blood glucose concentration and small intestinal nutrients in modulating gastric motility and appetite.


1991 ◽  
Vol 261 (3) ◽  
pp. E304-E311 ◽  
Author(s):  
M. Walker ◽  
G. R. Fulcher ◽  
C. F. Sum ◽  
H. Orskov ◽  
K. G. Alberti

The purpose of this study was to examine the effect of physiological plasma nonesterified fatty acid (NEFA) levels on insulin-stimulated forearm and whole body glucose uptake and substrate oxidation during euglycemia and hyperglycemia. Seven healthy men received Intralipid and heparin for 210 min in two studies, with saline as control in two further studies. Insulin (0.05 U.kg-1.h-1) was infused from 60 min, and euglycemia was maintained during lipid (EL) and control (EC) studies, and hyperglycemia was maintained in the other studies (HL and HC). Forearm NEFA uptake was comparable in the lipid studies (+61 +/- 10 and +52 +/- 8 nmol.100 ml forearm-1.min-1, EL and HL) and was suppressed in the controls. With Intralipid, forearm glucose uptake decreased during euglycemia but not during hyperglycemia (+3.85 +/- 0.34 vs. +3.34 +/- 0.25 mumol.100 ml forearm-1.min-1, EC vs. EL, P less than 0.02), with comparable changes in whole body glucose uptake. Glucose oxidation and forearm alanine release decreased with Intralipid at both blood glucose levels, with no significant change in the rates of nonoxidative glucose disposal. These observations support the operation of the glucose-fatty acid cycle at physiological plasma NEFA levels at both blood glucose concentrations, but this was associated with a decrease in peripheral insulin sensitivity only during euglycemia.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2171
Author(s):  
Kim Ang ◽  
Carla Bourgy ◽  
Haelee Fenton ◽  
Ahmed Regina ◽  
Marcus Newberry ◽  
...  

Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.


2001 ◽  
Vol 281 (5) ◽  
pp. H2097-H2104 ◽  
Author(s):  
Judy R. Kersten ◽  
Wolfgang G. Toller ◽  
John P. Tessmer ◽  
Paul S. Pagel ◽  
David C. Warltier

We tested the hypothesis that hyperglycemia alters retrograde coronary collateral blood flow by a nitric oxide-mediated mechanism in a canine Ameriod constrictor model of enhanced collateral development. Administration of 15% dextrose to increase blood glucose concentration to 400 or 600 mg/dl decreased retrograde blood flow through the left anterior descending coronary artery to 78 ± 9 and 82 ± 8% of baseline values, respectively. In contrast, saline or l-arginine (400 mg · kg−1 · h−1) had no effect on retrograde flow. Coronary hypoperfusion and 1 h of reperfusion decreased retrograde blood flow similarly in saline- orl-arginine-treated dogs (76 ± 11 and 89 ± 4% of baseline, respectively), but these decreases were more pronounced in hyperglycemic dogs (47 ± 10%). l-Arginine prevented decreases in retrograde coronary collateral blood flow during hyperglycemia (100 ± 5 and 95 ± 6% of baseline at blood glucose concentrations of 400 and 600 mg/dl, respectively) and after coronary hypoperfusion and reperfusion (84 ± 14%). The results suggest that hyperglycemia decreases retrograde coronary collateral blood flow by adversely affecting nitric oxide availability.


1986 ◽  
Vol 233 (2) ◽  
pp. 485-491 ◽  
Author(s):  
A M Rofe ◽  
R Bais ◽  
R A Conyers

During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.


1993 ◽  
Vol 47 (7) ◽  
pp. 875-881 ◽  
Author(s):  
R. Marbach ◽  
Th. Koschinsky ◽  
F. A. Gries ◽  
H. M. Heise

Near-infrared (NIR) spectra of the human inner lip were obtained by using a special optimized accessory for diffuse reflectance measurements. The partial-least squares (PLS) multivariate calibration algorithm was applied for linear regression of the spectral data between 9000 and 5500 cm−1 (Λ = 1.1–1.8 μm) against blood glucose concentrations determined by a standard clinical enzymatic method. Calibration experiments with a single person were carried out under varying conditions, as well as with a population of 133 different patients, with capillary and venous blood glucose concentration values provided. A genuine correlation between the blood glucose concentrations and the NIR-spectra can be proven. A time lag of about 10 min for the glucose concentration in the spectroscopically probed tissue volume vs. the capillary concentration can be estimated. Mean-square prediction errors obtained by cross-validation were in the range of 45 to 55 mg/dL. An analysis of different variance factors showed that the major contribution to the average prediction uncertainty was due to the reduced measurement reproducibility, i.e., variations in lip position and contact pressure. The results demonstrate the feasibility of using diffuse reflectance NIR-spectroscopy for the noninvasive measurement of blood glucose.


Author(s):  
Arina D. Puspitasari ◽  
Hayu Kusuma ◽  
Dinda M.N. Ratri ◽  
Cahyo Wibisono ◽  
Budi Suprapti

AbstractBackgroundOne of the therapies used to treat type 2 diabetes mellitus (T2DM) disease is combination insulin which consists of rapid-acting insulin and intermediate-acting insulin (premixed). This study aimed to examine the profile of premixed insulin related to blood glucose concentration and to identify the drug interactions due to the combination of premixed insulin with other drugs taken by T2DM patients.MethodsThis study was a prospective observational study with cross-sectional data that were analyzed descriptively. The respondents invited were T2DM patients with or without complication or comorbid disease who received premixed insulin with or without a combination of oral antidiabetic therapy in the Outpatient Unit of Universitas Airlangga Hospital, Surabaya. The research instruments used are data sheet, patient medical record, and fasting and postprandial blood glucose concentration.ResultsA total of 118 patients received premixed insulin therapy, but only 80 patients were included in the inclusion criteria. Based on types of insulin, the combination of 30% aspart and 70% protamine aspart was used by 91.25% T2DM patients, and a combination of 25% insulin lispro and 75% protamine lispro was used by 8.75% T2DM patients. There were 30.3% of patients who could achieve the target of 80–130 mg/dL in fasting blood glucose concentrations, and 35.1% of patients achieved the target of ≤180 mg/dL in postprandial blood glucose concentration. Drug interactions may occur in patients who use premixed insulin with glimepiride, lisinopril, fenofibrate, candesartan, irbesartan, and gemfibrozil.ConclusionsIn this study, premixed insulin have not reached the target of fasting and postprandial blood glucose concentrations in most patients.


Sign in / Sign up

Export Citation Format

Share Document