scholarly journals Recombinant human thrombomodulin. Regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side chain

1992 ◽  
Vol 283 (1) ◽  
pp. 151-157 ◽  
Author(s):  
J F Parkinson ◽  
C J Vlahos ◽  
S C B Yan ◽  
N U Bang

Two glycoforms of a secretable human thrombomodulin mutant [TMD1-105 and TMD1-75; Parkinson, Grinnell, Moore, Hoskins, Vlahos & Bang (1990) J. Biol. Chem. 265, 12602-12610] were expressed in human 293 cells and used to study the role of glycosylation in the functions of this endothelial-cell thrombin receptor. Carbohydrate content analysis and intrinsic labelling with [3H]glucosamine and [35S]sulphate showed that TMD1-105 contained a chondroitin sulphate whereas TMD1-75 did not. Other than chondroitin sulphate, the carbohydrate contents of the two glycoforms were identical, indicating similar glycosylation patterns at other O-linked and N-linked sites in the two glycoforms. The properties of TMD1-105 were converted into those of TMD1-75 by chondroitin ABC lyase digestion. Trypsin digestion of labelled TMD1-105 permitted isolation of two overlapping peptides that contained chondroitin sulphate, spanned the entire O-glycosylation domain and had O-glycosylation sites at Ser-492, Ser-498, Thr-500, Thr-504 and Thr-506. The chondroitin sulphate-attachment site was assigned to Ser-492 as this residue is conserved in mouse and bovine thrombomodulin and lies within a sequence Ser-Gly-Ser-492-Gly-Glu-Pro, which has strong similarity to chondroitin sulphate attachment sites in other proteoglycans. Five peptides with N-linked carbohydrate were also isolated and contained glycosylation sites in the lectin-like domain (Asn-47, Asn-115, Asn-116) and in the fourth (Asn-382) and fifth (Asn-409) epidermal growth factor domains. The role of N-linked and simple O-linked carbohydrates in the functions of human thrombomodulin remain unclear. The present studies demonstrate, however, that the presence of chondroitin sulphate in human thrombomodulin has profound effects on all of the anticoagulant properties of this important anticoagulant thrombin receptor.

1996 ◽  
Vol 132 (6) ◽  
pp. 1199-1208 ◽  
Author(s):  
A Bartolazzi ◽  
A Nocks ◽  
A Aruffo ◽  
F Spring ◽  
I Stamenkovic

CD44-mediated cell adhesion to hyaluronate is controlled by mechanisms which are poorly understood. In the present work we examine the role of N-linked glycosylation and Ser-Gly motifs in regulating CD44-hyaluronate interaction. Our results show that treatment of a panel of human cell lines which constitutively express CD44 with the inhibitor of N-linked glycosylation tunicamycin results in the loss of attachment of these cells to hyaluronate-coated substrate. In contrast, treatment of the same cells with deoxymannojirimycin, which inhibits the conversion of high mannose oligosaccharides to complex N-linked carbohydrates, results in either no change or an increase in CD44-mediated adhesion to hyaluronate, suggesting that complex N-linked oligosaccharides may not be required for and may even inhibit CD44-HA interaction. Using human melanoma cells stably transfected with CD44 N-linked glycosylation site-specific mutants, we show that integrity of five potential N-linked glycosylation sites within the hyaluronate recognition domain of CD44 is critical for hyaluronate binding. Mutation of any one of these potential N-linked glycosylation sites abrogates CD44-mediated melanoma cell attachment to hyaluronate-coated surfaces, suggesting that all five sites are necessary to maintain the HA-recognition domain in the appropriate conformation. We also demonstrate that mutation of serine residues which constitute the four Ser-Gly motifs in the membrane proximal domain, and provide potential sites for glycosaminoglycan side chain attachment, impairs hyaluronate binding. Taken together, these observations indicate that changes in glycosylation of CD44 can have profound effects on its interaction with hyaluronic acid and suggest that glycosylation may provide an important regulatory mechanism of CD44 function.


2021 ◽  
Author(s):  
Dror Shitrit ◽  
Thomas Hackl ◽  
Raphael Laurenceau ◽  
Nicolas Raho ◽  
Michael C. G. Carlson ◽  
...  

AbstractMarine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.


1988 ◽  
Vol 8 (10) ◽  
pp. 4197-4203
Author(s):  
A K Taylor ◽  
R Wall

The importance of carbohydrate in the secretion of immunoglobulin A (IgA) has previously been suggested by results of studies with tunicamycin, which prevents N-linked glycosylation of all cell glycoproteins. To directly evaluate the role of individual oligosaccharides in the secretion of IgA, we have used site-directed mutagenesis to selectively eliminate the two N-linked attachment sites reported to be glycosylated in alpha heavy chains. Transfected wild-type and mutant alpha genes were expressed in kappa light-chain-producing MPC-11 variant myeloma cells, and secretion kinetics of the IgAs were compared. Removal of either or both glycosylation sites led to intracellular alpha heavy-chain degradation and a 90 to 95% inhibition of IgA secretion. These results reveal that both N-linked oligosaccharides of the alpha heavy chain are essential for intracellular stability and normal secretion of IgA. This suggests that the key function of carbohydrate here is to maintain proper conformation of the glycoprotein. We also found that when expressed in the MPC-11 variant cells, alpha heavy chains were glycosylated at a third, normally unused site.


2021 ◽  
Author(s):  
Yudai Ono ◽  
Tempei Sato ◽  
Chisa Shukunami ◽  
Hiroshi Asahara ◽  
Masafumi Inui

SummaryThe elaborate movement of the vertebrate body is supported by the precise connection of muscle, tendon and bone. Each of the >600 distinct skeletal muscles in the human body has unique attachment sites; however, the mechanism through which muscles are reproducibly attached to designated partner tendons during embryonic development is incompletely understood. We herein show that Screlaxis-positive tendon cells have an essential role in correct muscle attachment in mouse embryos. Specific ablation of Screlaxis-positive cells resulted in dislocation of muscle attachment sites and abnormal muscle bundle morphology. Step-by-step observation of myogenic cell lineage revealed that post-fusion myofibers, but not migrating myoblasts, require tendon cells for their morphology. Furthermore, muscles could change their attachment site, even after the formation of the insertion. Our study demonstrated an essential role of tendon cells in the reproducibility and plasticity of skeletal muscle patterning, in turn revealing a novel tissue-tissue interaction in musculoskeletal morphogenesis.Graphical abstract


1988 ◽  
Vol 8 (10) ◽  
pp. 4197-4203 ◽  
Author(s):  
A K Taylor ◽  
R Wall

The importance of carbohydrate in the secretion of immunoglobulin A (IgA) has previously been suggested by results of studies with tunicamycin, which prevents N-linked glycosylation of all cell glycoproteins. To directly evaluate the role of individual oligosaccharides in the secretion of IgA, we have used site-directed mutagenesis to selectively eliminate the two N-linked attachment sites reported to be glycosylated in alpha heavy chains. Transfected wild-type and mutant alpha genes were expressed in kappa light-chain-producing MPC-11 variant myeloma cells, and secretion kinetics of the IgAs were compared. Removal of either or both glycosylation sites led to intracellular alpha heavy-chain degradation and a 90 to 95% inhibition of IgA secretion. These results reveal that both N-linked oligosaccharides of the alpha heavy chain are essential for intracellular stability and normal secretion of IgA. This suggests that the key function of carbohydrate here is to maintain proper conformation of the glycoprotein. We also found that when expressed in the MPC-11 variant cells, alpha heavy chains were glycosylated at a third, normally unused site.


Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


2020 ◽  
Vol 27 (19) ◽  
pp. 3123-3150 ◽  
Author(s):  
Renata Kozyraki ◽  
Olivier Cases

Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.


Sign in / Sign up

Export Citation Format

Share Document