scholarly journals The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex

1998 ◽  
Vol 331 (1) ◽  
pp. 291-297 ◽  
Author(s):  
Françoise COUSTRY ◽  
Satrajit SINHA ◽  
Sankar N. MAITY ◽  
Benoit de CROMBRUGGHE

The CCAAT-binding factor CBF is a heterotrimeric transcription factor that specifically binds to CCAAT sequences in many eukaryotic genes. Previous studies have shown that CBF contains two transcription activation domains: a glutamine-rich, serine-threonine-rich domain present in the CBF-B subunit and a glutamine-rich domain in the CBF-C subunit. In this study, by using a series of deletion mutations of CBF-B and CBF-C in transcription assay in vitro, we further delineated smaller segments in these domains that were sufficient to support transcriptional activation by CBF. To test whether transcription activation by CBF requires co-activators, we examined the interaction between CBF and dTAF110, a component of the Drosophila TFIID complex. Recent work has demonstrated that glutamine-rich domains of the Sp1 transcription factor interact with dTAF110 and that this interaction has an important role in mediating transcription activation. Here we first demonstrate in a direct interaction assay in vitro that CBF binds dTAF110. By using a yeast two-hybrid system we show that both of the transcription activation domains of CBF interact with dTAF110. A deletion analysis suggests that a segment of CBF-B needed for transcription activation is also involved in interaction with dTAF110. In CBF-C the C-terminal portion of the molecule seems to be needed for these two activities. Our results suggest that TAF110 might represent one of the co-activators that mediate transcriptional activation by CBF.

1995 ◽  
Vol 311 (3) ◽  
pp. 769-773 ◽  
Author(s):  
M A Bevilacqua ◽  
M C Faniello ◽  
P D′Agostino ◽  
B Quaresima ◽  
M T Tiano ◽  
...  

In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf.


1997 ◽  
Vol 17 (12) ◽  
pp. 7008-7018 ◽  
Author(s):  
D S McNabb ◽  
K A Tseng ◽  
L Guarente

The CCAAT-binding factor is an evolutionarily conserved heteromeric transcription factor that binds to CCAAT box-containing upstream activation sites within the promoters of numerous eukaryotic genes. The CCAAT-binding factor from Saccharomyces cerevisiae is a heterotetramer that contains the subunits Hap2p, Hap3p, Hap4p, and Hap5p and that functions in the activation of genes involved in respiratory metabolism. Here we describe the isolation of the cDNA encoding the Schizosaccharomyces pombe homolog of Hap5p, designated php5+. We have shown that Php5p is a subunit of the CCAAT-binding factor in fission yeast and is required for transcription of the S. pombe cyc1+ gene. Analysis of the evolutionarily conserved regions of Hap5p, Php5p, and the mammalian homolog CBF-C revealed two essential domains within Hap5p that are required for DNA binding and transcriptional activation. One is an 87-amino-acid core domain that is conserved among Hap5p, Php5p, and CBF-C and that is required for the assembly of the Hap2p-Hap3p-Hap5p heterotrimer both in vitro and in vivo. A second domain that is essential for the recruitment of Hap4p into the CCAAT-binding complex was identified in Hap5p and Php5p.


2001 ◽  
Vol 21 (4) ◽  
pp. 1145-1154 ◽  
Author(s):  
Mario Mencı́a ◽  
Kevin Struhl

ABSTRACT TFIID, a multiprotein complex comprising the TATA-binding protein (TBP) and TBP-associated factors (TAFs), associates specifically with core promoters and nucleates the assembly the RNA polymerase II transcription machinery. In yeast cells, TFIID is not generally required for transcription, although it plays an important role at many promoters. Understanding of the specific functions and physiological roles of individual TAFs within TFIID has been hampered by the fact that depletion or thermal inactivation of individual TAFs generally results in dissociation of the TFIID complex. We describe here C-terminally deleted derivatives of yeast TAF130 that assemble into normal TFIID complexes but are transcriptionally inactive in vivo. In vivo, these mutant TFIID complexes are dramatically reduced in their ability to associate with all promoters tested. In vitro, a TFIID complex containing a deleted form of TAF130 associates poorly with DNA, but it is unaffected for interacting with transcriptional activation domains. These results suggest that the C-terminal region of TAF130 is required for TFIID to associate with promoters.


1998 ◽  
Vol 18 (1) ◽  
pp. 233-239 ◽  
Author(s):  
Jörg Kaufmann ◽  
Katharina Ahrens ◽  
Ronald Koop ◽  
Stephen T. Smale ◽  
Rolf Müller

ABSTRACT The transcription factor IID (TFIID) complex is highly conserved between the Drosophila and mammalian systems. A mammalian homolog has been described for all the Drosophila TATA box-binding protein-associated factors (TAFs), with the exception of dTAFII150. We previously reported the identification of CIF, an essential cofactor for TFIID-dependent transcription from promoters containing initiator (Inr) elements. Here we describe the molecular cloning of CIF150, the human homolog of dTAFII150, and present biochemical evidence that this factor is involved in Inr activity. CIF150 is capable of mediating TFIID-dependent Inr activity in a complementation assay, and a protein fraction lacking Inr activity lacks detectable amounts of CIF150. Despite the striking similarity to dTAFII150, CIF150 does not appear to be associated with human TFIID. However, in vitro binding assays revealed a specific and direct interaction between CIF150 and hTAFII135. This interaction might be structurally important for the functional interaction between CIF150 and human TFIID, since CIF150 stabilizes TFIID binding to a core promoter.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


1994 ◽  
Vol 14 (6) ◽  
pp. 3927-3937
Author(s):  
M Kretzschmar ◽  
G Stelzer ◽  
R G Roeder ◽  
M Meisterernst

We have isolated from a crude Hela cell cofactor fraction (USA) a novel positive cofactor that cooperates with the general transcription machinery to effect efficient stimulation of transcription by GAL4-AH, a derivative of the Saccharomyces cerevisiae regulatory factor GAL4. PC2 was shown to be a 500-kDa protein complex and to be functionally and biochemically distinct from native TFIID and previously identified cofactors. In the presence of native TFIID and other general factors, PC2 was necessary and sufficient for activation by GAL4-AH. Cofactor function was specific for transcriptional activation domains of GAL4-AH. The repressor histone H1 further potentiated but was not required for activation of transcription by GAL4-AH. On the basis of the observation that PC2 exerts entirely positive effects on transcription, we propose a model in which PC2 increases the activity of the preinitiation complex in the presence of an activator, thereby establishing a specific pathway during activation of RNA polymerase II.


Sign in / Sign up

Export Citation Format

Share Document