scholarly journals A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family

2000 ◽  
Vol 345 (3) ◽  
pp. 611-619 ◽  
Author(s):  
Hui-shan TUNG ◽  
Bengt GUSS ◽  
Ulf HELLMAN ◽  
Lena PERSSON ◽  
Kristofer RUBIN ◽  
...  

Staphylococcus aureus bacteria, isolated from bone and joint infections, specifically interact with bone sialoprotein (BSP), a glycoprotein of bone and dentine extracellular matrix, via a cell-surface protein of Mr 97000 [Yacoub, Lindahl, Rubin, Wendel, Heinegård and Rydén, (1994) Eur. J. Biochem. 222, 919-925]. Amino acid sequences of seven trypsin fragments from the 97000-Mr BSP-binding protein were determined. A gene encoding a protein encompassing all seven peptide sequences was identified from chromosomal DNA isolated from S. aureus strain O24. This gene encodes a protein with 1171 amino acids, called BSP-binding protein (Bbp), which displays similarity to recently described proteins of the Sdr family from S. aureus. SdrC, SdrD and SdrE encode putative cell-surface proteins with no described ligand specificity. Bbp also shows similarity to a fibrinogen-binding protein from S. epidermidis called Fbe. A serine-aspartic acid repeat sequence was found close to the cell-wall-anchoring Leu-Pro-Xaa-Thr-Gly sequence in the C-terminal end of the protein. Escherichia coli cells were transformed with an expression vector containing a major part of the bbp gene fused to the gene for glutathione S-transferase. The affinity-purified fusion protein bound radiolabelled native BSP, and inhibited the binding of radiolabelled BSP to staphylococcal cells. Serum from patients suffering from bone and joint infection contained antibodies that reacted with the fusion protein of the BSP-binding protein, indicating that the protein is expressed during an infection and is immunogenic. The S. aureus Bbp protein may be important in the localization of bacteria to bone tissue, and thus might be of relevance in the pathogenicity of osteomyelitis.

1995 ◽  
Vol 106 (5) ◽  
pp. 783-802 ◽  
Author(s):  
G B Melikyan ◽  
W D Niles ◽  
F S Cohen

Time-resolved admittance measurements were used to follow formation of individual fusion pores connecting influenza virus hemagglutinin (HA)-expressing cells to planar bilayer membranes. By measuring in-phase, out-of-phase, and dc components of currents, pore conductances were resolved with millisecond time resolution. Fusion pores developed in stages, from small pores flickering open and closed, to small successful pores that remained open until enlarging their lumens to sizes greater than those of viral nucleocapsids. The kinetics of fusion and the properties of fusion pores were studied as functions of density of the fusion protein HA. The consequences of treating cell surfaces with proteases that do not affect HA were also investigated. Fusion kinetics were described by waiting time distributions from triggering fusion, by lowering pH, to the moment of pore formation. The kinetics of pore formation became faster as the density of active HA was made greater or when cell surface proteins were extensively cleaved with proteases. In accord with this faster kinetics, the intervals between transient pore openings within the flickering stage were shorter for higher HA density and more extensive cell surface treatment. Whereas the kinetics of fusion depended on HA density, the lifetimes of open fusion pores were independent of HA density. However, the lifetimes of open pores were affected by the proteolytic treatment of the cells. Faster fusion kinetics correlated with shorter pore openings. We conclude that the density of fusion protein strongly affects the kinetics of fusion pore formation, but that once formed, pore evolution is not under control of fusion proteins but rather under the influence of mechanical forces, such as membrane bending and tension.


2000 ◽  
Vol 345 (3) ◽  
pp. 611 ◽  
Author(s):  
Hui-shan TUNG ◽  
Bengt GUSS ◽  
Ulf HELLMAN ◽  
Lena PERSSON ◽  
Kristofer RUBIN ◽  
...  

2012 ◽  
Vol 11 (11) ◽  
pp. 1123-1139 ◽  
Author(s):  
Mathilde Ythier ◽  
Grégory Resch ◽  
Patrice Waridel ◽  
Alexandre Panchaud ◽  
Aurélie Gfeller ◽  
...  

Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.


2015 ◽  
Vol 83 (7) ◽  
pp. 2966-2975 ◽  
Author(s):  
Sana S. Dastgheyb ◽  
Amer E. Villaruz ◽  
Katherine Y. Le ◽  
Vee Y. Tan ◽  
Anthony C. Duong ◽  
...  

Staphylococcus aureusis a leading cause of prosthetic joint infections, which, as we recently showed, proceed with the involvement of biofilm-like clusters that cause recalcitrance to antibiotic treatment. Here we analyzed why these clusters grow extraordinarily large, reaching macroscopically visible extensions (>1 mm). We found that while specificS. aureussurface proteins are a prerequisite for agglomeration in synovial fluid, low activity of the Agr regulatory system and subsequent low production of the phenol-soluble modulin (PSM) surfactant peptides cause agglomerates to grow to exceptional dimensions. Our results indicate that PSMs function by disrupting interactions of biofilm matrix molecules, such as the polysaccharide intercellular adhesin (PIA), with the bacterial cell surface. Together, our findings support a two-step model of staphylococcal prosthetic joint infection: As we previously reported, interaction ofS. aureussurface proteins with host matrix proteins such as fibrin initiates agglomeration; our present results show that, thereafter, the bacterial agglomerates grow to extremely large sizes owing to the lack of PSM expression under the specific conditions present in joints. Our findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms ofS. aureusinfection, and have important implications for antistaphylococcal therapeutic strategies.


1996 ◽  
Vol 134 (2) ◽  
pp. 339-348 ◽  
Author(s):  
J Lazarovits ◽  
H Y Naim ◽  
A C Rodriguez ◽  
R H Wang ◽  
E Fire ◽  
...  

The influenza virus A/Japan/305/57 hemagglutinin (HA) can be converted from a protein that is essentially excluded from coated pits into one that is internalized at approximately the rate of uptake of bulk membrane by replacing the HA transmembrane and cytoplasmic sequences with those of either of two other glycoproteins (Roth et al., 1986. J. Cell Biol. 102:1271-1283). To identify more precisely the foreign amino acid sequences responsible for this change in HA traffic, DNA sequences encoding the transmembrane (TM) or cytoplasmic (CD) domains of either the G glycoprotein of vesicular stomatitis virus (VSV) or the gC glycoprotein of herpes simplex virus were exchanged for those encoding the analogous regions of wild type HA (HA wt). HA-HA-G and HA-HA-gC, chimeras that contain only a foreign CD, resembled HA wt in having a long residence on the cell surface and were internalized very slowly. HA-HA-gC was indistinguishable from HA in our assays, whereas twice as much HA-HA-G was internalized as was HA wt. However, HA-G-HA, containing only a foreign TM, was internalized as efficiently as was HA-G-G, a chimeric protein with transmembrane and cytoplasmic sequences of VSV G protein. Conditions that blocked internalization through coated pits also inhibited endocytosis of the chimeric proteins. Although the external domains of the chimeras were less well folded than that of the wild type HA, denaturation of the wild type HA external domain by treatment with low pH did not increase the interaction of HA with coated pits. However, mutation of four amino acids in the TM of HA allowed the protein to be internalized, indicating that the property that allows HA to escape endocytosis resides in its TM. These results indicate that possession of a cytoplasmic recognition feature is not required for the internalization of all cell surface proteins and suggest that multiple mechanisms for internalization exist that operate at distinctly different rates.


1999 ◽  
Vol 65 (9) ◽  
pp. 4134-4140 ◽  
Author(s):  
Elin Gunneriusson ◽  
Patrik Samuelson ◽  
Jenny Ringdahl ◽  
Hans Grönlund ◽  
Per-Åke Nygren ◽  
...  

ABSTRACT An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from aStaphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinantS. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.


1994 ◽  
Vol 222 (3) ◽  
pp. 919-925 ◽  
Author(s):  
Alia YACOUB ◽  
Per LINDAHL ◽  
Kristofer RUBIN ◽  
Mikael WENDEL ◽  
Dick HEINEGARD ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Philippe Herman-Bausier ◽  
Sofiane El-Kirat-Chatel ◽  
Timothy J. Foster ◽  
Joan A. Geoghegan ◽  
Yves F. Dufrêne

ABSTRACT Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet established. Here, we use single-cell and single-molecule atomic force microscopy to unravel the mechanism by which FnBPA mediates intercellular adhesion. We show that FnBPA is responsible for specific cell-cell interactions that involve the FnBPA A domain and cause microscale cell aggregation. We demonstrate that the strength of FnBPA-mediated adhesion originates from multiple low-affinity homophilic interactions between FnBPA A domains on neighboring cells. Low-affinity binding by means of FnBPA may be important for biofilm dynamics. These results provide a molecular basis for the ability of FnBPA to promote cell accumulation during S. aureus biofilm formation. We speculate that homophilic interactions may represent a generic strategy among staphylococcal cell surface proteins for guiding intercellular adhesion. As biofilm formation by MRSA strains depends on proteins rather than polysaccharides, our approach offers exciting prospects for the design of drugs or vaccines to inhibit protein-dependent intercellular interactions in MRSA biofilms. IMPORTANCE Staphylococcus aureus is a human pathogen that forms biofilms on indwelling medical devices, such as central venous catheters and prosthetic joints. This leads to biofilm infections that are difficult to treat with antibiotics because many cells within the biofilm matrix are dormant. The fibronectin-binding proteins (FnBPs) FnBPA and FnBPB promote biofilm formation by clinically relevant methicillin-resistant S. aureus (MRSA) strains, but the molecular mechanisms involved remain poorly understood. We used atomic force microscopy techniques to demonstrate that FnBPA mediates cell-cell adhesion via multiple, low-affinity homophilic bonds between FnBPA A domains on adjacent cells. Therefore, FnBP-mediated homophilic interactions represent an interesting target to prevent MRSA biofilms. We propose that such homophilic mechanisms may be widespread among staphylococcal cell surface proteins, providing a means to guide intercellular adhesion and biofilm accumulation.


2002 ◽  
Vol 70 (12) ◽  
pp. 6680-6687 ◽  
Author(s):  
Simon R. Clarke ◽  
Llinos G. Harris ◽  
R. Geoff Richards ◽  
Simon J. Foster

ABSTRACT In order for Staphylococcus aureus to adhere to host extracellular matrix (ECM) substrates, it elicits a wide range of surface proteins. We have characterized a novel ∼1.1-MDa protein in S. aureus, termed Ebh (for ECM-binding protein homologue), which has homology to other ECM-binding proteins. Ebh consists of several domains, including a large central region with 44 imperfect repeats of 126 amino acids. Expression analysis revealed ebh to be growth phase regulated and repressed by agr. A fragment of the central repeat region of Ebh was cloned, overexpressed, and used in ligand-binding studies to determine Ebh function. The recombinant protein was found to specifically bind human fibronectin. Ebh is produced during human infection since serum samples taken from patients with confirmed S. aureus infections were found to contain anti-Ebh antibodies. Localization studies revealed Ebh to be cell envelope associated and is proposed to form a specialized surface structure involved in cellular adhesion.


Sign in / Sign up

Export Citation Format

Share Document