Expression of the splice variants of the p85α regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients

2001 ◽  
Vol 360 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Etienne LEFAI ◽  
Marina ROQUES ◽  
Nathalie VEGA ◽  
Martine LAVILLE ◽  
Hubert VIDAL

The regulation by insulin of the expression of the p85α regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase) is impaired in skeletal muscle and adipose tissue of type 2 diabetic patients. The gene encoding p85α (named grb-1) can generate several variants by alternative splicing, all being able to activate the p110 catalytic subunits of PI 3-kinase. Our aims were (i) to determine the mRNA expression profiles of these variants in human skeletal muscle and adipose tissue; (ii) to investigate the effect of insulin on their expression in vivo and in vitro in muscle and (iii) to verify whether this regulation is defective in type 2 diabetes. We determined the human genomic organization of grb-1 and set up reverse transcriptase competitive PCR assays for the quantification of each mRNA variant. In muscle, p85α and p50α mRNAs were the most abundant, and p55α represented less than 20% of all grb-1-derived mRNAs. In adipose tissue, p85α was expressed predominantly and p55α mRNA was not detectable. These expression profiles were not different in type 2 diabetics. During a 3h hyperinsulinaemic clamp, insulin increased the mRNA expression of the three variants in muscle of control subjects. In diabetic patients, the effect of insulin on p85α and p50α mRNAs was blunted, and largely reduced on p55α transcripts. In cultured human myotubes, up-regulation of p85α, p55α and p50α mRNAs by insulin was abolished by LY294002 (10μM) and by rapamycin (50nM), suggesting that the PI 3-kinase/protein kinase B/p70 S6 kinase pathway could be involved in the stimulation of grb-1 gene expression by insulin in human muscle cells.

2010 ◽  
Vol 298 (6) ◽  
pp. E1161-E1169 ◽  
Author(s):  
Cédric Dray ◽  
Cyrille Debard ◽  
Jennifer Jager ◽  
Emmanuel Disse ◽  
Danièle Daviaud ◽  
...  

Apelin, an adipocyte-secreted factor upregulated by insulin, is increased in adipose tissue (AT) and plasma with obesity. Apelin was recently identified as a new player in the control of glucose homeostasis. However, the regulation of apelin and APJ (apelin receptor) expression in skeletal muscle in relation to insulin resistance or type 2 diabetes is not known. Thus we studied apelin and APJ expression in AT and muscle in different mice models of obesity and in type 2 diabetic patients. In insulin-resistant high-fat (HF)-fed mice, apelin and APJ expression were increased in AT compared with control. This was not the case in AT of highly insulin-resistant db/ db mice. In skeletal muscle, apelin expression was similar in control and HF-fed mice and decreased in db/ db mice. APJ expression was decreased in both HF-fed and db/ db mice. Control subjects and type 2 diabetic patients were subjected to a hyperinsulinemic-euglycemic clamp, and tissues biopsies were obtained before and at the end of the clamp. There was no significant difference in basal apelin and APJ expression in AT and muscle between control and diabetic patients. However, apelin plasma levels were significantly increased in diabetic patients. During the clamp, hyperinsulinemia increased apelin and APJ expression in AT of control but not in diabetic subjects. In muscle, only APJ mRNA levels were increased in control but also in diabetic patients. Taken together, these data show that apelin and APJ expression in mice and humans is regulated in a tissue-dependent manner and according to the severity of insulin resistance.


2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


2014 ◽  
Vol 63 (10) ◽  
pp. 851-858 ◽  
Author(s):  
Alessandro Baldan ◽  
Silvia Ferronato ◽  
Silvia Olivato ◽  
Giovanni Malerba ◽  
Alberto Scuro ◽  
...  

2003 ◽  
Vol 284 (2) ◽  
pp. E443-E448 ◽  
Author(s):  
A. S. Lihn ◽  
T. Østergård ◽  
B. Nyholm ◽  
S. B. Pedersen ◽  
B. Richelsen ◽  
...  

Adiponectin is suggested to be an important mediator of insulin resistance. Therefore, we investigated the association between adiponectin and insulin sensitivity in 22 healthy first-degree relatives (FDR) to type 2 diabetic patients and 13 matched control subjects. Subcutaneous adipose tissue biopsies were taken before and after a hyperinsulinemic euglycemic clamp. FDR subjects were insulin resistant, as indicated by a reduced Mvalue (4.44 vs. 6.09 mg · kg−1· min−1, P < 0.05). Adiponectin mRNA expression was 45% lower in adipose tissue from FDR compared with controls ( P < 0.01), whereas serum adiponectin was similar in the two groups (6.4 vs. 6.6 μg/ml, not significant). Insulin infusion reduced circulating levels of adiponectin moderately (11–13%) but significantly in both groups ( P < 0.05). In the control group, adiponectin mRNA levels were negatively correlated with fasting insulin ( P < 0.05) and positively correlated with insulin sensitivity ( P < 0.05). In contrast, these associations were not found in the FDR group. In conclusion, FDR have reduced adiponectin mRNA in subcutaneous adipose tissue but normal levels of circulating adiponectin. Adiponectin mRNA levels are positively correlated with insulin sensitivity in control subjects but not in FDR. These findings indicate dysregulation of adiponectin gene expression in FDR.


2006 ◽  
Vol 290 (3) ◽  
pp. E560-E565 ◽  
Author(s):  
Rachele Berria ◽  
Lishan Wang ◽  
Dawn K. Richardson ◽  
Jean Finlayson ◽  
Renata Belfort ◽  
...  

Oversupply and underutilization of lipid fuels are widely recognized to be strongly associated with insulin resistance in skeletal muscle. Recent attention has focused on the mechanisms underlying this effect, and defects in mitochondrial function have emerged as a potential player in this scheme. Because evidence indicates that lipid oversupply can produce abnormalities in extracellular matrix composition and matrix changes can affect the function of mitochondria, the present study was undertaken to determine whether muscle from insulin-resistant, nondiabetic obese subjects and patients with type 2 diabetes mellitus had increased collagen content. Compared with lean control subjects, obese and type 2 diabetic subjects had reduced muscle glucose uptake ( P < 0.01) and decreased insulin stimulation of tyrosine phosphorylation of insulin receptor substrate-1 and its ability to associate with phosphatidylinositol 3-kinase ( P < 0.01 and P < 0.05). Because it was assayed by total hydroxyproline content, collagen abundance was increased in muscle from not only type 2 diabetic patients but also nondiabetic obese subjects (0.26 ± 0.05, 0.57 ± 0.18, and 0.67 ± 0.20 μg/mg muscle wet wt, lean controls, obese nondiabetics, and type 2 diabetics, respectively), indicating that hyperglycemia itself could not be responsible for this effect. Immunofluorescence staining of muscle biopsies indicated that there was increased abundance of types I and III collagen. We conclude that changes in the composition of the extracellular matrix are a general characteristic of insulin-resistant muscle.


Sign in / Sign up

Export Citation Format

Share Document