scholarly journals Identification of signalling cascades involved in red blood cell shrinkage and vesiculation

2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Elena B. Kostova ◽  
Boukje M. Beuger ◽  
Thomas R.L. Klei ◽  
Pasi Halonen ◽  
Cor Lieftink ◽  
...  

After screening two libraries of small bioactive molecules and kinase inhibitors, we identified several signalling pathways to be involved in red blood cell (RBC) shrinkage and vesiculation. These include the Jak (Janus kinase)–STAT (signal transducer and activator of transcription) pathway, phosphoinositide 3-kinase (PI3K)–Akt pathway, the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) signalling.

2014 ◽  
Vol 42 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Ana P. Costa-Pereira

IL-6 (interleukin 6)-type cytokines are pleiotropic molecules, critical for cellular homoeostasis and with well-recognized roles in several human diseases. They all activate JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling and, depending on the particular cytokine, cell type and cellular environment, they can also trigger the activation of MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) cascades. Although it is clear that JAK/STAT and MAPK reciprocally regulate each other, how these signalling pathways are fully integrated remains to be fully understood. Not only do cells have to be able to integrate and conciliate what are often contradictory signalling cues, but they are also subject to complex regulatory mechanisms involving these pathways. More specifically, we have shown recently that ERK2 (extracellular-signal-regulated kinase 2) is required for the transcriptional regulation of gp130 (glycoprotein 130), a key receptor complex component for most IL-6-type cytokines. ERK2 not only binds to the gp130 promoter and is required for full expression of the protein, but it also regulates the stability of gp130 mRNA. This function of ERK2 is not shared by ERK1 and it probably represents an entirely novel function for this prominent kinase.


2003 ◽  
Vol 369 (2) ◽  
pp. 351-356 ◽  
Author(s):  
Sam A. JOHNSON ◽  
Richard M. DENTON

In isolated rat adipocytes, the insulin stimulation of pyruvate dehydrogenase can be partially inhibited by inhibitors of PI3K (phosphoinositide 3-kinase) and MEK1/2 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase). In combination, U0126 and wortmannin completely block the insulin stimulation of pyruvate dehydrogenase. It is concluded that the effect of insulin on pyruvate dehydrogenase in rat adipocytes involves two distinct signalling pathways: one is sensitive to wortmannin and the other to U0126. The synthetic phosphoinositolglycan PIG41 can activate pyruvate dehydrogenase but the activation is only approx. 30% of the maximal effect of insulin. This modest activation can be completely blocked by wortmannin alone, suggesting that PIG41 acts through only one of the pathways leading to the activation of pyruvate dehydrogenase.


2009 ◽  
Vol 29 (15) ◽  
pp. 4250-4261 ◽  
Author(s):  
Marianne F. James ◽  
Sangyeul Han ◽  
Carolyn Polizzano ◽  
Scott R. Plotkin ◽  
Brendan D. Manning ◽  
...  

ABSTRACT Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.


Blood ◽  
2015 ◽  
Vol 125 (23) ◽  
pp. 3536-3541 ◽  
Author(s):  
David Kuhrt ◽  
Don M. Wojchowski

Abstract As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO’s biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia.


2006 ◽  
Vol 394 (3) ◽  
pp. 557-562 ◽  
Author(s):  
Lisa M. Ballou ◽  
Mohar Chattopadhyay ◽  
Yan Li ◽  
Suzanne Scarlata ◽  
Richard Z. Lin

Several studies have reported that activation of Gq-coupled receptors inhibits PI3K (phosphoinositide 3-kinase) signalling. In the present study, we used purified proteins to demonstrate that Gαq directly inhibits p110α/p85α PI3K in a GTP-dependent manner. Activated Gαq binds to the p110α/p85α PI3K with an apparent affinity that is seven times stronger than that for Gαq·GDP as measured by fluorescence spectroscopy. In contrast, Gαq did not bind to the p110γ PI3K. Fluorescence spectroscopy experiments also showed that Gαq competes with Ras, a PI3K activator, for binding to p110α/p85α. Interestingly, co-precipitation studies using deletion mutants showed that Gαq binds to the p85-binding domain of p110α and not to the Ras-binding domain. Expression of constitutively active GαqQ209L in cells inhibited Ras activation of the PI3K/Akt pathway but had no effect on Ras/Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] signalling. These results suggest that activation of Gq-coupled receptors leads to increased binding of Gαq·GTP to some isoforms of PI3K, which might explain why these receptors inhibit this signalling pathway in certain cell types.


Sign in / Sign up

Export Citation Format

Share Document