scholarly journals The proliferation and invasion of osteosarcoma are inhibited by miR-101 via targetting ZEB2

2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Haopeng Lin ◽  
Xiaodong Zheng ◽  
Ting Lu ◽  
Yang Gu ◽  
Canhao Zheng ◽  
...  

AbstractHaving a better grasp of the molecular mechanisms underlying carcinogenesis and progression in osteosarcoma would be helpful to find novel therapeutic targets. Different types of cancers have presented abnormal expression of miRNA-101 (miR-101). Nevertheless, we still could not figure out what expression of miR-101 in human osteosarcoma is and its biological function. Thus, we conducted the present study to identify its expression, function, and molecular mechanism in osteosarcoma. We detected the expression of miR-101 in osteosarcoma samples and cell lines. The effects of miR-101 on osteosarcoma cells’ proliferation and invasion were evaluated. Luciferase reporter assay was applied to identify the direct target of miR-101. Compared with adjacent normal specimens and normal bone cell line by using qPCR, the expression levels of miR-101 in osteosarcoma specimens and human osteosarcoma cell lines distinctly decreased. According to function assays, we found that overexpression of miR-101 significantly inhibited the cell proliferation and invasion in osteosarcoma cells. Moreover, we confirmed that zinc finger E-box binding homeobox 2 (ZEB2) was a direct target of miR-101. In addition, overexpression of ZEB2 could rescue the inhibition effect of proliferation and invasion induced by miR-101 in osteosarcoma cells. MiR-101 has been proved to be down-regulated in osteosarcoma and has the ability to suppress osteosarcoma cell proliferation and invasion by directly targetting ZEB2.

2016 ◽  
Vol 38 (2) ◽  
pp. 598-608 ◽  
Author(s):  
Guangnan Chen ◽  
Tingting Fang ◽  
Zhongming Huang ◽  
Yiying Qi ◽  
Shaohua Du ◽  
...  

Background/Aims: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR). The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.


2020 ◽  
Vol 29 ◽  
pp. 096368972095309
Author(s):  
Jianmin Liu ◽  
Ming Chen ◽  
Longyang Ma ◽  
Xingbo Dang ◽  
Gongliang Du

Accumulating evidence has shown that long noncoding RNA GAS5 is a well-known tumor suppressor in the pathogenesis of a variety of human cancers. However, the detailed role of GAS5 in osteosarcoma is still largely unclear. In this study, we found that GAS5 was downregulated in human osteosarcoma tissues and cell lines compared with matched adjacent tissues and normal osteoblast cells. Overexpression of GAS5 could significantly suppress the growth and invasion of osteosarcoma cells, while downregulation of GAS5 promoted cell proliferation and invasion. We confirmed that GAS5 could directly bind with miR-23a-3p by using luciferase reporter gene and RNA immunoprecipitation and pull-down assay. Downregulation of miR-23a-3p repressed cell proliferation and invasion. Overexpression of miR-23a-3p counterbalanced the inhibition effect of GAS5 on cell proliferation and invasion. Further studies indicated that overexpression of GAS5 inhibited cell proliferation and metastasis by regulating phosphatase and tensin homolog (PTEN). PTEN was authenticated as a target of miR-23a-3p. Upregulation of GAS5 or silence of miR-23a-3p increased the level of PTEN, while downregulation of GAS5 or overexpression of miR-23a-3p suppressed the expression of PTEN. In addition, overexpression of GAS5 could neutralize the effect of downregulating PTEN on osteosarcoma cell functions. We proved that GAS5 regulated the viability and invasion of osteosarcoma cells through the PI3K/AKT pathway. Moreover, overexpression of GAS5 could inhibit tumor growth in a xenograft nude mouse model in vivo. In summary, GAS5 functions as a competing endogenous RNA, sponging miR-23a-3p, to promote PTEN expression and suppress cell growth and invasion in osteosarcoma by regulating the PI3K/AKT pathway.


2017 ◽  
Vol 43 (2) ◽  
pp. 768-774 ◽  
Author(s):  
Tieying Tao ◽  
Qinrong Shen ◽  
Jianmin Luo ◽  
Yang Xu ◽  
Wenqing Liang

Background/Aims: Increasing evidence has shown that miR-125a plays important role in human cancer progression. However, little is known about the function of miR-125a in osteosarcoma. Methods: The expression of miR-125a in osteosarcoma tissues and cell lines were examined by qRT-PCR. The biological role of miR-125a in osteosarcoma cell proliferation was examined in vitro. The targets of miR-125a were identified by a dual-luciferase reporter assay. Results: The results showed that the expression of miR-125a expression is significantly lower in osteosarcoma tissues and cell lines. Survival curves showed that the survival of patients in high miR-125a expression was significantly longer than that of patients with low miR-125a expression, and multivariate analysis suggested that miR-125a is an independent prognostic factor for osteosarcoma patients. In addition, it was found in this study that miR-125a can inhibit the growth of osteosarcoma cells. The dual-luciferase reporter assay demonstrated that E2F2 is a novel target gene for miR-125a. In addition, in a recovery experiment, it was shown that miR-125a inhibits the biological function of osteosarcoma cells by inhibiting the expression of E2F2. Conclusion: Our results suggest that miR-125a acts as a tumor suppressor via regulation of E2F2 expression in osteosarcoma progression, and miR-125a may represent a novel therapeutic target for the treatment of osteosarcoma.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Author(s):  
Jianmin Liu ◽  
Ming Chen ◽  
Longyang Ma ◽  
Xingbo Dang ◽  
Gongliang Du

Abstract Background: Accumulating evidence has shown that lncRNA growth arrest special 5 (GAS5) is a well‑known tumor suppressor in the pathogenesis of a variety of human cancers. However, the detailed role of GAS5 in osteosarcoma is largely unclear. Here, we explore the role of GAS5 in progression of osteosarcoma. Methods: The expression level of GAS5 was detected in human osteosarcoma tissues and matched adjacent tissues, as well as osteosarcoma cell lines and non-malignant osteoblast cells. Then, in vitro gain- and loss-of-function experiments, with the pcDNA-GAS5 expression vector and GAS5-siRNA, were performed in U2OS and HOS cells to determine the effect of GAS5 on osteosarcoma cell proliferation and invasion. Subsequently, we searched potential miRNA targets with bioinformatics analysis and confirmed their interaction by using luciferase reporter gene and RNA pull-down assays. The function and mechanism of miR-23a-3p in proliferation and invasion was also investigated in U2OS and HOS cells. Furthermore, rescue experiments were performed to verify the involvement of miR-23a-3p and its target gene in GAS5-mediated cell behaviors. Finally, a xenograft nude mouse model was established by subcutaneous injection with U2OS cells overexpressing GAS5 or not, and the effect of GAS5 on tumor growth in vivo was evaluated. Results: GAS5 was downregulated in human osteosarcoma tissues and cell lines. Overexpression of GAS5 could significantly suppress, and downregulation of GAS5 promoted, proliferation and invasion of osteosarcoma cells. GAS5 could directly bind with and downregulated miR-23a-3p that post-transcriptionally downregulated the tumor suppressor PTEN and positively regulated proliferation and invasion of osteosarcoma cells. Rescue experiments confirmed the involvement of miR-23a-3p and PTEN in GAS5-mediated cell behaviors by modifying the phosphatidylinositol-3-kinases/protein-serine-threonine kinase (PI3K/AKT) pathway. GAS5 could inhibit tumor growth in vivo . Conclusion: GAS5 functions as a competing endogenous RNA , sponging miR-23a-3p, to promote PTEN expression and suppress cell growth and invasion in osteosarcoma by regulating the PI3K/AKT pathway.


2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Jose M. Moran ◽  
Olga Leal-Hernandez ◽  
Maria L. Canal-Macías ◽  
Raul Roncero-Martin ◽  
Rafael Guerrero-Bonmatty ◽  
...  

In this study, we evaluated the antiproliferative activity on two human osteosarcoma cell lines (MG-63 and Saos2) of oleuropein, an olive oil compound traditionally found in the Mediterranean diet. Oleuropein exhibited obvious cytotoxic effects on human osteosarcoma cells in a concentration- and time-dependent manner. Statistical analysis of IC50 by the Probit regression method suggested that oleuropein had similar toxic effects on both cell lines tested (IC50 range from 247.4–475.0 μM for MG63 cells and from 798.7–359.9 μM for Saos2 cells).


Author(s):  
Shuwei Zhang ◽  
Yichi Zhou ◽  
Yuanyu Zha ◽  
Yang Yang ◽  
Linlong Wang ◽  
...  

Author(s):  
Weitao Yao ◽  
Xin Wang ◽  
Qiqing Cai ◽  
Songtao Gao ◽  
Jiaqiang Wang ◽  
...  

TRAF4, or tumor necrosis factor receptor-associated factor 4, is overexpressed in several cancers, suggesting a specific role in cancer progression. However, its functions in osteosarcoma are unclear. This study aimed to explore the expression of TRAF4 in osteosarcoma tissues and cells, the correlation of TRAF4 to clinical pathology of osteosarcoma, as well as the role and mechanism of TRAF4 in osteosarcoma metastasis. The protein expression levels of TRAF4 in osteosarcoma tissues and three osteosarcoma cell lines, MG-63, HOS, and U2OS, were assessed. Constructed TRAF4 overexpression vectors and established TRAF4 overexpression of the U2OS cell line. Cell proliferation, cell invasion, protein levels, and TRAF4 phosphorylations were assessed following TRAF4 transfection, as well as the effects of TRAF4 siRNA on cell proliferation and invasion. The results show that TRAF4 protein levels in osteosarcoma tissues were significantly higher than that in normal bone tissues. Importantly, an obvious upregulation of TRAF4 was found in carcinoma tissues from patients with lung metastasis compared with patients without lung metastasis. Consistently, a similar increase in TRAF4 mRNA and protein was also demonstrated in the osteosarcoma cell lines MG-63, HOS, and U2OS compared to normal bone cells, hFOB1.19. When TRAF4 was overexpressed in U2OS cells, cell proliferation was significantly enhanced, accompanied by an increase in Ki67 expression and colony formation. Compared with the control and vector-treated groups, TRAF4 transfection increased the invasion potential of U2OS cells (p<0.05). Interestingly, TRAF4 transfection significantly enhanced the phosphorylation of Akt. After blocking Akt with its specific siRNA, TRAF4-induced cell proliferation and invasion were dramatically attenuated. In summary, our findings demonstrated that TRAF4 enhances osteosarcoma cell proliferation and invasion partially by the Akt pathway. This work suggests that TRAF4 might be an important target in osteosarcoma.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Wei Zhang ◽  
Liang Zhu ◽  
Guowei Yang ◽  
Bo Zhou ◽  
Jianhua Wang ◽  
...  

Abstract Increasing evidence shows that circular RNAs (circRNAs) play a regulatory role in cancer. In the present study, we aimed to investigate the characteristics and effects of hsa_circ_0026134 in hepatocellular carcinoma (HCC). We investigated hsa_circ_0026134 expression in 20 pairs of clinical tissues from HCC patients; expression of hsa_circ_0026134 in different cell lines; effect of hsa_circ_0026134 on proliferation and invasion of HCC cell lines; and the regulatory mechanisms and interactions among hsa_circ_0026134, miR-127-5p, tripartite motif-containing protein 25 (TRIM25) and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). hsa_circ_0026134 expression was increased in HCC samples and cell lines. Down-regulation of hsa_circ_0026134 attenuated HCC cell proliferation and metastatic properties. Micro (mi)RNA (miR)-127-5p was sponged by hsa_circ_0026134. Rescue experiments indicated that inhibition of miR-127-5p expression promoted cell proliferation and invasion even after hsa_circ_0026134 silencing. TRIM25 and IGF2BP3 were targets of miR-127-5p. Overexpression of TRIM25 or IGF2BP3 promoted cell proliferation and invasion in cells overexpressing miR-127-5p. Down-regulation of hsa_circ_0026134 suppressed TRIM25- and IGF2BP3-mediated HCC cell proliferation and invasion via promotion of miR-127-5p expression, which have been confirmed by luciferase reporter assay. The present study provides a new treatment target for HCC.


2021 ◽  
Author(s):  
Lu Zhang ◽  
Hongxin Cao ◽  
Guanghui Gu ◽  
Dehui Hou ◽  
Yunhao You ◽  
...  

Abstract Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. microRNAs have been found to play a vital role in tumor angiogenesis. Here, we investigated the effects of miR-199a-5p on tumor growth and angiogenesis in osteosarcoma. Furthermore, the underlying molecular mechanisms and signaling pathways were explored.Methods: The datasets were extracted from the Gene Expression Omnibus and the differentially expressed miRNAs (DEmiRNAs) were screened out by the GEO2R online platform. The potential target genes were predicted using the miRTarBase database. The predicted target genes were further analyzed by Gene Ontology and pathway enrichment analysis and a regulatory network of DEmiRNAs and their target genes was constructed. In addition, the effects of osteosarcoma cell derived exosomal miR-199a-5p on the proliferation, migration and neovascularization of HUVECs were evaluated by conducting EdU assays, Transwell experiments and tube formation assays. A dual-luciferase reporter assay was performed to detect whether VEGFA was the direct target of miR-199a-5p. Furthermore, in vivo xenograft models were established to further investigate the intrinsic role of miR-199a-5p in osteosarcoma tumorigenesis and angiogenesis. Results: A total of 149 DE-miRNAs were screened out, including 136 upregulated miRNAs and 13 downregulated miRNAs in human osteosarcoma plasma samples compared with normal plasma samples. A total of 1313 target genes of the top three upregulated and downregulated miRNAs were predicted. In the PPI network, the top 10 hub nodes with higher degrees were identified as hub genes, such as TP53 and VEGFA. By constructing the miRNA-hub gene network, we found that most of hub genes could be potentially modulated by miR-663a, miR-199a-5p and miR-223-3p. In addition, we found that the expression level of miR-199a-5p in exosomes derived from osteosarcoma cells was remarkably higher than the osteosarcoma cells, and the exosomes derived from osteosarcoma cells were transported to HUVECs. Overexpression of miR-199a-5p could significantly inhibited HUVEC proliferation, migration and neovascularization, whereas downregulation of miR-199a-5p expression exerted the opposite effect. Moreover, the in vivo results verified that overexpression of miR-199a-5p in osteosarcoma cells could suppress the growth and angiogenesis of tumors. Conclusion: Our results demonstrated that miR-199a-5p could be transported from osteosarcoma cells to HUVECs through exosomes, subsequently targeting VEGFA and inhibiting the growth and angiogenesis of osteosarcoma. Therefore, miR-199a-5p may act as a biomarker in the diagnosis and treatment of osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document