scholarly journals Antiproliferative Properties of Oleuropein in Human Osteosarcoma Cells

2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Jose M. Moran ◽  
Olga Leal-Hernandez ◽  
Maria L. Canal-Macías ◽  
Raul Roncero-Martin ◽  
Rafael Guerrero-Bonmatty ◽  
...  

In this study, we evaluated the antiproliferative activity on two human osteosarcoma cell lines (MG-63 and Saos2) of oleuropein, an olive oil compound traditionally found in the Mediterranean diet. Oleuropein exhibited obvious cytotoxic effects on human osteosarcoma cells in a concentration- and time-dependent manner. Statistical analysis of IC50 by the Probit regression method suggested that oleuropein had similar toxic effects on both cell lines tested (IC50 range from 247.4–475.0 μM for MG63 cells and from 798.7–359.9 μM for Saos2 cells).

2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiong Wang ◽  
Lei Zhang ◽  
Wenji Wang ◽  
Yuchen Wang ◽  
Ye Chen ◽  
...  

Human osteosarcoma is the most frequent primary malignant of bone, and often occurs in adolescents. However, molecular mechanism of this disease remains unclear. In the present study, we found that the level of Rhotekin 2 (RTKN2) was up-regulated in osteosarcoma tissues and cell lines. In addition, silencing of RTKN2 of human osteosarcoma cell lines U2OS, inhibited proliferation, and induced G1 phase cell cycle arrest via reducing the level of the cyclin-dependent kinase 2 (CDK2). Furthermore, RTKN2 knockdown in the U2OS cells induced apoptosis by increasing the level of Bax and decreasing the level of Bcl2. These results suggested that RTKN2 is involved in the progression of human osteosarcoma, and may be a potential therapeutic target.


2016 ◽  
Vol 38 (2) ◽  
pp. 598-608 ◽  
Author(s):  
Guangnan Chen ◽  
Tingting Fang ◽  
Zhongming Huang ◽  
Yiying Qi ◽  
Shaohua Du ◽  
...  

Background/Aims: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR). The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.


1970 ◽  
Vol 64 (1) ◽  
Author(s):  
Kun Han ◽  
Zhihua Gan ◽  
Shuchen Lin ◽  
Haiyan Hu ◽  
Zan Shen ◽  
...  

Osteosarcoma is the most common primary malignant bone tumor in adolescents and young adults. However, the involvement of serine/threonine phosphatase type 5 (PP5) in osteosarcoma remains unclear. The aim of this study was to evaluate the functional role of PP5 in osteosarcoma cells. Firstly, we found that PP5 is widely expressed in several human osteosarcoma cell lines. Then we used lentivirus-delivered siRNA to silence PP5 expression in Saos-2 and U2OS cell lines. Knockdown of endogenous PP5 expression by shRNA-expressing lentivirus significantly decreased the viability and proliferation of the osteosarcoma cells. Moreover, FACS analysis showed that knockdown of PP5 expression induced a significant arrest in the G0/G1 phase of the cell cycle, which was associated with the inhibition of cell proliferation. Therefore, knockdown of PP5 is likely to provide a novel alternative to targeted therapy of osteosarcoma and deserves further investigation.


2020 ◽  
Vol 10 (8) ◽  
pp. 2852
Author(s):  
Laura De-Ugarte ◽  
Susanna Balcells ◽  
Robert Guerri-Fernandez ◽  
Daniel Grinberg ◽  
Adolfo Diez-Perez ◽  
...  

The miR-320a regulates a number of genes involved in various physiological processes. In particular, it has been reported as a tumor suppressor in several types of human cancers and involved in osteoporotic fracture and osteoblast function. Hence, the role of miR-320a has been evaluated in tumor cells and in primary cells in a separated context, but its effect has never been explored in a comparative manner. The present study aims to evaluate the cellular effects of miR-320a on human osteosarcoma cell lines (MG-63 and U2OS) compared to that on primary human osteoblasts (hOBs). miR-320a was either overexpressed or inhibited in all cell lines, and cell proliferation and viability were analyzed. Additionally, the effects of miR-320a on matrix mineralization, alkaline phosphatase activity, and oxidative stress were also evaluated in order to assess osteoblast functionality. In osteosarcoma cells, miR-320a overexpression reduced cell viability and proliferation, while in hOB cell viability was not affected and proliferation even was increased. The overexpression of miR-320a in both osteosarcoma cells and hOBs reduced the mineralization capacity. Finally, an increased oxidative stress was detected in all cells after miR-320a overexpression mainly in osteosarcoma. In conclusion, the overexpression of miR-320a increased stress oxidation levels, which could be involved in the reduced osteoblast performance, even though the cell viability was only affected in osteosarcoma cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Huanhuan Lv ◽  
Chenxiao Zhen ◽  
Junyu Liu ◽  
Peng Shang

Osteosarcoma is the most common primary malignancy of the skeleton in children and adults. The outcomes of people with osteosarcomas are unsatisfied. β-Phenethyl isothiocyanate (PEITC) exhibits chemoprevention and chemotherapeutic activities against many human cancers. The molecular mechanism underlying its action on osteosarcoma is still unknown. This study was aimed at investigating the effect of PEITC on human osteosarcoma both in vitro and in vivo. The results showed that PEITC reduced cell viability, inhibited proliferation, and caused G2/M cell cycle arrest in four human osteosarcoma cell lines (MNNG/HOS, U-2 OS, MG-63, and 143B). Then, we found that PEITC altered iron metabolism related to the processes of iron import, storage, and export, which resulted in increased labile iron. Expectedly, PEITC caused oxidative stress as a consequence of GSH depletion-inducing ROS generation and lipid peroxidation. Multiple cell death modalities, including ferroptosis, apoptosis, and autophagy, were triggered in human osteosarcoma cells. Three MAPKs (ERK, p38, and JNK) were all activated after PEITC treatment; however, they presented different responses among the four human osteosarcoma cell lines. ROS generation was proved to be the major cause of PEITC-induced decreased proliferative potential, altered iron metabolism, cell death, and activated MAPKs in human osteosarcoma cells. In addition, PEITC also significantly delayed tumor growth in a xenograft osteosarcoma mouse model with a 30 mg/kg administration dose. In conclusion, this study reveals that PEITC simultaneously triggers ferroptosis, apoptosis, and autophagy in human osteosarcoma cells by inducing oxidative stress.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 174
Author(s):  
Manuela Piazzi ◽  
Snezana Kojic ◽  
Cristina Capanni ◽  
Nemanja Stamenkovic ◽  
Alberto Bavelloni ◽  
...  

Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23012-e23012
Author(s):  
Jake N. Lichterman ◽  
Robert Post ◽  
Luke Menken ◽  
Bishoy Saad ◽  
Justin Delgado ◽  
...  

e23012 Background: Pulmonary metastases still remains the leading cause of mortality in osteosarcoma, with a 5-year survival rate of less than 30%. 17-β estradiol and testosterone are known to promote tumorigenesis and metastasis in other cancers, but its role in osteosarcoma tumorigenesis and metastasis is unclear. An understanding of the mechanism that these hormones have in osteosarcoma tumorigenesis and metastasis will lead to new therapeutic strategies using currently available targeted therapies used in breast and prostate cancer. Methods: We began by assessing the in vitro characteristics of two human osteosarcoma cell lines treated with 17-β estradiol or testosterone via proliferation and invasion assays. For the in vivo experiments, NCR nu/nu mice were injected with two luciferase-tagged human osteosarcoma cell lines and treated with 17-β estradiol and testosterone slow-release pellets. We first injected the mice subcutaneously and monitored tumor growth via caliper measurements. In the second experiment we injected the cell lines intratibially and monitored primary tumor growth in the bone and monitored metastasis formation in the lungs via IVIS bioluminescent imaging. Quantification of luciferase signal (photons/second) in the lungs was performed via the Xenogen Living Image software. H&E and immunohistochemistry for luciferase expression was performed on lung tissue to quantify tumor burden in the lungs. Statistical analysis was performed using Graphpad Prism. Results: Treatment with 17-β estradiol and testosterone increased cell proliferation and invasion in a dose-dependent manner. We observed increased tumor growth with both 17-β estradiol and testosterone in the subcutaneous model. In the intratibial experiment, testosterone increases primary tumor growth, but has no effect on metastasis. 17-β estradiol decreases primary tumor growth, but increases metastasis in a cell line independent manner. Conclusions: This study demonstrates a novel role for the puberty-related sex steroid hormones, 17-β estradiol and testosterone, in osteosarcoma tumor growth and metastasis. Uncovering the mechanism behind this phenomenon will uncover new therapeutic options for this devastating disease.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 52 ◽  
Author(s):  
Lucas Dias ◽  
Ana Batista de Carvalho ◽  
Sara Pinto ◽  
Gilberto Aquino ◽  
Mário Calvete ◽  
...  

In the present study, we developed a green epoxidation approach for the synthesis of the diastereomers of (−)-isopulegol benzyl ether epoxide using molecular oxygen as the oxidant and a hybrid manganese(III)-porphyrin magnetic reusable nanocomposite as the catalyst. High activity, selectivity, and stability were obtained, with up to four recycling cycles without the loss of activity and selectivity for epoxide. The anticancer effect of the newly synthesized isopulegol epoxide diastereomers was evaluated on a human osteosarcoma cell line (MG-63); both diastereomers showed similar in vitro potency. The measured IC50 values were significantly lower than those reported for other monoterpene analogues, rendering these epoxide isomers as promising anti-tumor agents against low prognosis osteosarcoma.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2665 ◽  
Author(s):  
Ziqi Yue ◽  
Xin Guan ◽  
Rui Chao ◽  
Cancan Huang ◽  
Dongfang Li ◽  
...  

Diallyl disulfide (DADs), a natural organic compound, is extracted from garlic and scallion and has anti-tumor effects against various tumors. This study investigated the anti-tumor activity of DADs in human osteosarcoma cells and the mechanisms. MG-63 cells were exposed to DADs (0, 20, 40, 60, 80, and 100 μM) for different lengths of time (24, 48, and 72 h). The CCK8 assay results showed that DADs inhibited osteosarcoma cell viability in a dose-and time-dependent manner. FITC-Annexin V/propidium iodide staining and flow cytometry demonstrated that the apoptotic ratio increased and the cell cycle was arrested at the G2/M phase as the DADs concentration was increased. A Western blot analysis was employed to detect the levels of caspase-3, Bax, Bcl-2, LC3-II/LC3-I, and p62 as well as suppression of the mTOR pathway. High expression of LC3-II protein revealed that DADs induced formation of autophagosome. Furthermore, DADs-induced apoptosis was weakened after adding 3-methyladenine, demonstrating that the DADs treatment resulted in autophagy-mediated death of MG-63 cells. In addition, DADs depressed p-mTOR kinase activity, and the inhibited PI3K/Akt/mTOR pathway increased DADs-induced apoptosis and autophagy. In conclusion, our results reveal that DADs induced G2/M arrest, apoptosis, and autophagic death of human osteosarcoma cells by inhibiting the PI3K/Akt/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document