scholarly journals Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes

Author(s):  
Peng Wu ◽  
Gang Deng ◽  
Xiyalatu Sai ◽  
Huiming Guo ◽  
Huanlei Huang ◽  
...  

Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.

2020 ◽  
Vol 21 (17) ◽  
pp. 6124
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rocío Castro-Viñuelas ◽  
María Piñeiro-Ramil ◽  
Silvia Rodríguez-Fernández ◽  
Isaac Fuentes-Boquete ◽  
...  

Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.


2020 ◽  
Vol 129 (5) ◽  
pp. 1051-1061
Author(s):  
D. Merrill Dane ◽  
Khoa Cao ◽  
Yu-An Zhang ◽  
Kemp H. Kernstine ◽  
Amiq Gazdhar ◽  
...  

To examine whether the secreted products of human induced pluripotent stem cells (iPSCs) facilitate innate adaptive responses following loss of lung tissue, adult dogs underwent surgical removal of one lung, then received repeated administration of iPSC secretory products via inhalational delivery compared with control treatment. Inhalation of iPSC secretory products enhanced capillary formation and beneficial structural remodeling in the remaining lung, leading to improved lung function.


2021 ◽  
Vol 13 (603) ◽  
pp. eabd1817
Author(s):  
Jacqueline M. Bliley ◽  
Mathilde C. S. C. Vermeer ◽  
Rebecca M. Duffy ◽  
Ivan Batalov ◽  
Duco Kramer ◽  
...  

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)–derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 981
Author(s):  
Takeshi Tokuyama ◽  
Razan Elfadil Ahmed ◽  
Nawin Chanthra ◽  
Tatsuya Anzai ◽  
Hideki Uosaki

Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chengzhu Zhao ◽  
Makoto Ikeya

Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and isolated from the bone marrow via plastic adhesion. Their multipotency and immunoregulatory properties make MSCs possible therapeutic agents, and an increasing number of publications and clinical trials have highlighted their potential in regenerative medicine. However, the finite proliferative capacity of MSCs limits their scalability and global dissemination as a standardized therapeutic product. Furthermore, adult tissue provenance could constrain accessibility, impinge on cellular potency, and incur greater exposure to disease-causing pathogens based on the donor. These issues could be circumvented by the derivation of MSCs from pluripotent stem cells. In this paper, we review methods that induce and characterize MSCs derived from induced pluripotent stem cells (iPSCs) and introduce MSC applications to disease modeling, pathogenic mechanisms, and drug discovery. We also discuss the potential applications of MSCs in regenerative medicine including cell-based therapies and issues that should be overcome before iPSC-derived MSC therapy will be applied in the clinic.


2020 ◽  
Author(s):  
Jacqueline M. Bliley ◽  
Mathilde C.S.C Vermeer ◽  
Rebecca M. Duffy ◽  
Ivan Batalov ◽  
Duco Kramer ◽  
...  

ABSTRACTThe role mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes in the heart. However, most EHT systems are unable to model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained fractional shortening of >10%. To do this, 3D EHTs are integrated with an elastic polydimethylsiloxane (PDMS) strip that provides mechanical pre- and afterload to the tissue in addition to enabling contractile force measurements based on strip bending. Our results demonstrate in wild-type EHTs that dynamic loading is beneficial based on the magnitude of the forces, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we use hiPSC–derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy (ACM) due to mutations in desmoplakin. We demonstrate that manifestation of this desmosome-linked disease state requires the dyn-EHT conditioning and that it cannot be induced using 2D or standard 3D EHT approaches. Thus, dynamic loading strategy is necessary to provoke a disease phenotype (diastolic lengthening, reduction of desmosome counts, and reduced contractility), which are akin to primary endpoints of clinical disease, such as chamber thinning and reduced cardiac output.Single Sentence SummaryDevelopment of a dynamic mechanical loading platform to improve contractile function of engineered heart tissues and study cardiac disease progression.


Author(s):  
Liang Ye ◽  
Xinyuan Zhang ◽  
Qin Zhou ◽  
Bin Tan ◽  
Hao Xu ◽  
...  

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (hiPSC-CMs) are a promising cell source for disease modeling, myocardial regeneration, and drug assessment. However, hiPSC-CMs have certain immature fetal CM-like properties that are different from the characteristics of adult CMs in several aspects, including cellular structure, mitochondrial function, and metabolism, thus limiting their applications. Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in cardiomyocytes. This study investigated the effects of AMPK on the maturation of hiPSC-CMs. Activation of AMPK in hiPSC-CMs significantly increased the expression of CM-specific markers and resulted in a more mature myocardial structure compared to that in the control cells. We found that activation of AMPK improved mitochondrial oxidative phosphorylation (OxPhos) and the oxygen consumption rate (OCR). Additionally, our data demonstrated that activation of AMPK increased mitochondrial fusion to promote the maturation of mitochondrial structure and function. Overall, activation of AMPK is an effective approach to promote hiPSC-CMs maturation, which may enhance the utility of hiPSC-CMs in clinical applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qizheng Wang ◽  
Yucui Xiong ◽  
Sheng Zhang ◽  
Yufei Sui ◽  
Cunlai Yu ◽  
...  

The use of differentiating human induced pluripotent stem cells (hiPSCs) in mini-tissue organoids provides an invaluable resource for regenerative medicine applications, particularly in the field of disease modeling. However, most studies using a kidney organoid model, focused solely on the transcriptomics and did not explore mechanisms of regulating kidney organoids related to metabolic effects and maturational phenotype. Here, we applied metabolomics coupled with transcriptomics to investigate the metabolic dynamics and function during kidney organoid differentiation. Not only did we validate the dominant metabolic alteration from glycolysis to oxidative phosphorylation in the iPSC differentiation process but we also showed that glycine, serine, and threonine metabolism had a regulatory role during kidney organoid formation and lineage maturation. Notably, serine had a role in regulating S-adenosylmethionine (SAM) to facilitate kidney organoid formation by altering DNA methylation. Our data revealed that analysis of metabolic characterization broadens our ability to understand phenotype regulation. The utilization of this comparative omics approach, in studying kidney organoid formation, can aid in deciphering unique knowledge about the biological and physiological processes involved in organoid-based disease modeling or drug screening.


2017 ◽  
Vol 37 (11) ◽  
pp. 2007-2013 ◽  
Author(s):  
Sara Borst ◽  
Xiuli Sim ◽  
Mortimer Poncz ◽  
Deborah L. French ◽  
Paul Gadue

Platelets, derived from megakaryocytes, are anucleate cytoplasmic discs that circulate in the blood stream and play major roles in hemostasis, inflammation, and vascular biology. Platelet transfusions are used in a variety of medical settings to prevent life-threatening thrombocytopenia because of cancer therapy, other causes of acquired or inherited thrombocytopenia, and trauma. Currently, platelets used for transfusion purposes are donor derived. However, there is a drive to generate nondonor sources of platelets to help supplement donor-derived platelets. Efforts have been made by many laboratories to generate in vitro platelets and optimize their production and quality. In vitro-derived platelets have the potential to be a safer, more uniform product, and genetic manipulation could allow for better treatment of patients who become refractory to donor-derived units. This review focuses on potential clinical applications of in vitro-derived megakaryocytes and platelets, current methods to generate and expand megakaryocytes from pluripotent stem cell sources, and the use of these cells for disease modeling.


Sign in / Sign up

Export Citation Format

Share Document