scholarly journals SNHG15 knockdown inhibits diabetic nephropathy progression in pediatric patients by regulating the miR-141/ICAM-1 axis in vitro

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Jiewei Liu ◽  
Dongliang Cai ◽  
Ying Wang ◽  
Yanhong Zou ◽  
Tana Zhao

Abstract Long non-coding RNAs (lncRNAs) are confirmed to be involved in modulating diabetic nephropathy (DN). The present study is aimed to explore the regulatory mechanism of lncRNA small nucleolar RNA host gene 15 (SNHG15) on pediatric DN. Human glomerular mesangial cells (HGMCs) were exposed to high glucose (HG) to produce an in vitro model. The results showed that SNHG15 was remarkably up-regulated in pediatric DN tissues and HG-induced HGMCs. Functional experiments indicated that both silencing of SNHG15 and overexpression of miR-141 elevated the cell viability, and suppressed the inflammation in HG-induced HGMCs. SNHG15 was identified to be a lncRNA that could bind to miR-141, and ICAM-1 was a downstream target gene of miR-141. Both the low expression of miR-141 and high expression of ICAM-1 reversed the inhibiting effect of SNHG15 knockdown on inflammatory response, and the promoting effect on cell viability. To conclude, our study revealed that silencing of SNHG15 ameliorated the malignant behaviors of pediatric DN via modulating the miR-141/ICAM-1 axis in vitro.

2020 ◽  
Vol 45 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Jin-Feng Zhan ◽  
Hong-Wei Huang ◽  
Chong Huang ◽  
Li-Li Hu ◽  
Wen-Wei Xu

Introduction: Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and is considered to be a sterile inflammatory disease. Increasing evidence suggest that pyroptosis and subsequent inflammatory response play a key role in the pathogenesis of DN. However, the underlying cellular and molecular mechanisms responsible for pyroptosis in DN are largely unknown. Methods: The rat models of DN were successfully established by single 65 mg/kg streptozotocin treatment. Glomerular mesangial cells were exposed to 30 mmol/L high glucose media for 48 h to mimic the DN environment in vitro. Gene and protein expressions were determined by quantitative real-time PCR and Western blot. Cell viability and pyroptosis were measured by MTT assay and flow cytometry analysis, respectively. The relationship between lncRNA NEAT1, miR-34c, and Nod-like receptor protein-3 (NLRP3) was confirmed by luciferase reporter assay. Results: We found that upregulation of NEAT1 was associated with the increase of pyroptosis in DN models. miR-34c, as a target gene of NEAT1, mediated the effect of NEAT1 on pyroptosis in DN by regulating the expression of NLRP3 as well as the expressions of caspase-1 and interleukin-1β. Either miR-34c inhibition or NLRP3 overexpression could reverse the accentuation of pyroptosis and inflammation by sh-NEAT1 transfection in the in vitro model of DN. Conclusions: Our findings suggested NEAT1 and its target gene miR-34c regulated cell pyroptosis via mediating NLRP3 in DN, providing new insights into understanding the molecular mechanisms of pyroptosis in the pathogenesis of DN.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2004 ◽  
Vol 286 (1) ◽  
pp. F134-F143 ◽  
Author(s):  
Shinya Mizuno ◽  
Toshikazu Nakamura

Diabetic nephropathy is now the leading cause of end-stage renal diseases, and glomerular sclerotic injury is an initial event that provokes renal dysfunction during processes of diabetes-linked kidney disease. Growing evidence shows that transforming growth factor-β1 (TGF-β1) plays a key role in this process, especially in eliciting hypertrophy and matrix overaccumulation. Thus it is important to find a ligand system to antagonize the TGF-β1-mediated pathogenesis under high-glucose conditions. Herein, we provide evidence that hepatocyte growth factor (HGF) targets mesangial cells, suppresses TGF-β1 production, and minimizes glomerular sclerotic changes, using streptozotocin-induced diabetic mice. In our murine model, glomerular sclerogenesis (such as tuft area expansion and collagen deposition) progressed between 6 and 10 wk after the induction of hyperglycemia, during a natural course of diabetic disease. Glomerular HGF expression levels in the diabetic kidney transiently increased but then declined below a basal level, with manifestation of glomerular sclerogenesis. When anti-HGF IgG was injected into mice for 2 wk (i.e., from weeks 4 to 6 after onset of hyperglycemia), these glomerular changes were significantly aggravated. When recombinant HGF was injected into the mice for 4 wk (i.e., between 6 and 10 wk following streptozotocin treatment), the progression of glomerular hypertrophy and sclerosis was almost completely inhibited, even though glucose levels remained unchanged (>500 mg/dl). Even more important, HGF repressed TGF-β1 production in glomerular mesangial cells even under hyperglycemic conditions both in vitro and in vivo. Consequently, not only albuminuria but also tubulointerstitial fibrogenesis were attenuated by HGF. Overall, HGF therapy inhibited the onset of renal dysfunction in the diabetic mice. On the basis of these findings, we wish to emphasize that HGF plays physiological and therapeutic roles in blocking renal fibrogenesis during a course of diabetic nephropathy.


2017 ◽  
Vol 45 (05) ◽  
pp. 1075-1092 ◽  
Author(s):  
Xiao-Ming Wu ◽  
Yan-Bin Gao ◽  
Li-Ping Xu ◽  
Da-Wei Zou ◽  
Zhi-Yao Zhu ◽  
...  

Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.


2009 ◽  
Vol 297 (5) ◽  
pp. F1229-F1237 ◽  
Author(s):  
Danqing Min ◽  
J. Guy Lyons ◽  
James Bonner ◽  
Stephen M. Twigg ◽  
Dennis K. Yue ◽  
...  

Infiltration of macrophages to the kidney is a feature of early diabetic nephropathy. For this to happen monocytes must become activated, migrate from the circulation, and infiltrate the mesangium. This process involves degradation of extracellular matrix, a process mediated by matrix metalloproteinases (MMPs). In the present study we investigate the expression of proinflammatory cytokines TNF-α, IL-6, and MMP-9 in glomeruli of control and diabetic rodents and use an in vitro coculture system to examine whether factors secreted by mesangial cells in response to a diabetic milieu can induce monocyte MMP-9 expression and infiltration. After 8 wk of diabetes, the glomerular level of TNF-α, IL-6, and macrophage number and colocalization of MMP-9 with macrophage were increased ( P < 0.01). Coculture of THP1 monocytes and glomerular mesangial cells in 5 or 25 mM glucose increased MMP-9 (5 mM: 65% and 25 mM: 112%; P < 0.05) and conditioned media degradative activity (5 mM: 30.0% and 25 mM: 33.5%: P < 0.05). These effects were reproduced by addition of mesangial cell conditioned medium to THP1 cells. High glucose (25 mM) increased TNF-α, IL-6, and monocyte chemoattractant protein-1 in mesangial cell conditioned medium. These cytokines all increased adhesion and differentiation of THP1 cells ( P < 0.05), but only TNF-α and IL-6 increased MMP-9 expression (50- and 60-fold, respectively; P < 0.05). Our results show that mesangial cell-secreted factors increase monocyte adhesion, differentiation, MMP expression, and degradative capacity. High glucose could augment these effects by increasing mesangial cell proinflammatory cytokine secretion. This mesangial cell-monocyte interaction may be important in activating monocytes to migrate from the circulation to the kidney in the early stages of diabetic nephropathy.


2021 ◽  
Vol 14 ◽  
Author(s):  
Temitope Adelusi ◽  
Xizhi Li ◽  
Liu Xu ◽  
Lei Du ◽  
Meng Hao ◽  
...  

Background: In this study, we investigated the Nrf2/ARE signaling pathway activating capacity of Biphenyl Diester Derivative-39 (BDD-39) in diabetic nephropathy in order to elucidate the mechanism surrounding its antidiabetic potential. Objectives: Protein expressions of Nrf2, HO-1, NQO-1 and biomarkers of kidney fibrosis were executed after which mRNA levels of Nrf2, HO-1 and NQO-1 were estimated after creating the models following BBD-39 treatment. Methods: Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with BDD-39 (15, 45mg· kg-1· d-1, ig) or a positive control drug resveratrol (45mg· kg-1·d-1, ig) for 8 weeks. Staining techniques were used to investigate collagen deposition in the glomerulus of the renal cortex and also to investigate the expression and localization of Nrf2 and extracellular matrix (ECM) proteins (collagen IV and laminin) in vitro and in vivo. Furthermore, we studied the mechanism of action of BDD-39 using RNA-mediated Nrf2 silencing technique in mouse SV40 glomerular mesangial cells (SV40 GM cells). Results : We found that BDD-39 activates Nrf2/ARE signaling pathway, promotes Nrf2 nuclear translocation (Nrf2nuc/Nrf2cyt) and modulate prominent biomarkers of kidney fibrosis at the protein level. However, BDD-39 could not activate Nrf2/ARE signaling in RNA-mediated Nrf2-silenced HG-cultured SV40 GM cells. Conclusion: Taken together, this study demonstrates for the first time that BDD-39 ameliorates experimental DN through attenuation of renal fibrosis progression and modulation of Nrf2/ARE signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Ko ◽  
Masahiko Hayashi ◽  
Miho Tanaka ◽  
Tomoaki Okuda ◽  
Chiharu Nishita-Hara ◽  
...  

AbstractWe evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.


Sign in / Sign up

Export Citation Format

Share Document