Insulin signalling, exercise and cellular integrity

2003 ◽  
Vol 31 (6) ◽  
pp. 1281-1285 ◽  
Author(s):  
J.P. Kirwan ◽  
L.F. del Aguila

Although the effects of exercise on insulin sensitivity are generally positive, eccentric exercise presents a paradox because it induces a transient state of insulin resistance that persists for up to 48 h after the exercise bout. Excessive eccentric contractions, such as prolonged downhill running, or marathon running, causes muscle damage and disruption of the integrity of the cell. Down-regulation of insulin receptor tyrosine phosphorylation and subsequent steps in the insulin signalling pathway, including insulin receptor substrate-1 (IRS-1)-associated phosphoinositide 3-kinase (PI3K), Akt kinase serine phosphorylation and activity and glucose transporter (GLUT-4) protein content, are evident in skeletal muscle after eccentric exercise. Furthermore, increased tumour necrosis factor α (TNF-α) secretion from monocytes is associated with the decrease in PI3K activity after this type of exercise. Recent studies have shown that TNF-α can increase IRS-1 serine/threonine phosphorylation, which impairs IRS-1 docking to the insulin receptor, and this inhibits insulin signalling. Thus a unifying hypothesis to explain insulin resistance after eccentric exercise may include inflammation arising from the disruption of muscle-cell integrity, leading to an acute-phase response that includes TNF-α, with the latter inhibiting insulin signalling and subsequent metabolic events. In contrast, exercise training increases insulin signalling and GLUT-4 expression, decreases TNF-α expression in skeletal muscle, and is associated with enhanced insulin sensitivity. These observations highlight the complexity of the cellular and molecular adaptations to exercise. Understanding these adaptations is essential in order to establish a sound theoretical basis for recommending exercise as a therapeutic intervention for insulin resistance and type 2 diabetes.


2007 ◽  
Vol 99 (4) ◽  
pp. 806-812 ◽  
Author(s):  
M. G. Sridhar ◽  
R. Vinayagamoorthi ◽  
V. Arul Suyambunathan ◽  
Z. Bobby ◽  
N. Selvaraj

The aim of this present study was to investigate the effect of bitter gourd extract on insulin sensitivity and proximal insulin signalling pathways in high-fat-fed rats. High-fat feeding of male Wistar rats for 10 weeks decreased the glucose tolerance and insulin sensitivity compared to chow-fed control rats. Bitter gourd extract supplementation for 2 weeks (9th and 10th) of high-fat feeding improved the glucose tolerance and insulin sensitivity. In addition bitter gourd extract reduced the fasting insulin (43 (se 4·4) v. 23 (se 5·2) μU/ml, P < 0·05), TAG (134 (se 12) v. 96 (se 5·5) mg/dl, P < 0·05), cholesterol (97 (se 6·3) v. 72 (se 5·2) mg/dl, P < 0·05) and epidydimal fat (4·8 (se 0·29) v. 3·6 (se 0·24) g, P < 0·05), which were increased by high-fat diet (HFD). High-fat feeding and bitter gourd supplementation did not have any effect on skeletal muscle insulin receptor, insulin receptor subtrate-1 (IRS-1) and insulin- stimulated insulin receptor tyrosine phosphorylation compared to chow-fed control rats. However high-fat feeding for 10 weeks reduced the insulin-stimulated IRS-1 tyrosine phosphorylation compared to control rats. Bitter gourd supplementation together with HFD for 2 weeks improved the insulin-stimulated IRS-1 tyrosine phosphorylation compared to rats fed with HFD alone. Our results show that bitter gourd extract improves insulin sensitivity, glucose tolerance and insulin signalling in HFD-induced insulin resistance. Identification of potential mechanism(s) by which bitter gourd improves insulin sensitivity and insulin signalling in high-fat-fed rats may open new therapeutic targets for the treatment of obesity/dyslipidemia-induced insulin resistance.



2020 ◽  
Vol 134 (10) ◽  
pp. 1167-1180
Author(s):  
Jing Cheng ◽  
Yi Tan ◽  
Jiong Zhou ◽  
Linda Xiao ◽  
Michael Johnson ◽  
...  

Abstract In the present study, we evaluated the metabolic effects of green tea polyphenols (GTPs) in high-fat diet (HFD) fed Zucker fatty (ZF) rats, in particular the effects of GTP on skeletal muscle insulin sensitivity. Body weight, visceral fat, glucose tolerance, lipid profiles and whole-body insulin sensitivity were measured in HFD-fed ZF rats after 8-week-treatment with GTP (200 mg/kg of body weight) or saline (5 ml/kg of body weight). Zucker lean rats were studied as controls. Ex vivo insulin-mediated muscle glucose uptake was assessed. Immunoblotting was used to evaluate the expression of key insulin signalling proteins in skeletal muscle. GTP treatment attenuated weight gain (P&lt;0.05) and visceral fat accumulation (27.6%, P&lt;0.05), and significantly reduced fasting serum glucose (P&lt;0.05) and insulin (P&lt;0.01) levels. Homoeostasis model assessment of insulin resistance (HOMA-IR), a measure of insulin resistance, was lower (P&lt;0.01) in GTP-treated animals compared with ZF controls. Moreover, insulin-stimulated glucose uptake by isolated soleus muscle was increased (P&lt;0.05) in GTP-ZF rats compared with ZF-controls. GTP treatment attenuated the accumulation of ectopic lipids (triacyl- and diacyl-glycerols), enhanced the expression and translocation of glucose transporter-4, and decreased pSer612IRS-1 and increased pSer473Akt2 expression in skeletal muscle. These molecular changes were also associated with significantly decreased activation of the inhibitory (muscle-specific) protein kinase (PKC) isoform, PKC-θ. Taken together, the present study has shown that regular ingestion of GTP exerts a number of favourable metabolic and molecular effects in an established animal model of obesity and insulin resistance. The benefits of GTP are mediated in part by inhibiting PKC-θ and improving muscle insulin sensitivity.



2009 ◽  
Vol 418 (3) ◽  
pp. 665-671 ◽  
Author(s):  
Madhurima Rajkhowa ◽  
Sandra Brett ◽  
Daniel J. Cuthbertson ◽  
Christopher Lipina ◽  
Antonio J. Ruiz-Alcaraz ◽  
...  

Insulin resistance is a recognized feature of PCOS (polycystic ovary syndrome). However, the molecular reason(s) underlying this reduced cellular insulin sensitivity is not clear. The present study compares the major insulin signalling pathways in skeletal muscle isolated from PCOS and controls. We measured whole-body insulin sensitivity and insulin signalling in skeletal muscle biopsies taken before and after acute exposure to hyperinsulinaemia in nine women diagnosed with PCOS and seven controls. We examined the expression, basal activity and response to in vivo insulin stimulation of three signalling molecules within these human muscle samples, namely IRS-1 (insulin receptor substrate-1), PKB (protein kinase B) and ERK (extracellular-signal-regulated kinase) 1/2. There was no significant difference in the expression, basal activity or activation of IRS-1 or PKB between PCOS and control subjects. However, there was a severe attenuation of insulin stimulation of the ERK pathway in muscle from all but two of the women with PCOS (the two most obese), and an accompanying trend towards higher basal phosphorylation of ERK1/2 in PCOS. These results are striking in that the metabolic actions of insulin are widely believed to require the IRS-1/PKB pathway rather than ERK, and the former has been reported as defective in some previous PCOS studies. Most importantly, the molecular defect identified was independent of adiposity. The altered response of ERK to insulin in PCOS was the most obvious signalling defect associated with insulin resistance in muscle from these patients.



Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Li Li ◽  
LaWanda H. Thompson ◽  
Ling Zhao ◽  
Joseph L. Messina

Acute insulin resistance occurs after injury, hemorrhage, infection, and critical illness. However, little is known about the development of this acute insulin-resistant state. In the current study, we found that insulin resistance develops rapidly in skeletal muscle, with the earliest insulin signaling defects at 60 min. However, defects in insulin signaling were measurable even earlier in liver, by as soon as 15 min after hemorrhage. To begin to understand the mechanisms for the development of acute insulin resistance, serine phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun N-terminal kinase phosphorylation/activation was investigated. These markers (and possible contributors) of insulin resistance were increased in the liver after hemorrhage but not measurable in skeletal muscle. Because glucocorticoids are important counterregulatory hormones responsible for glucose homeostasis, a glucocorticoid synthesis inhibitor, metyrapone, and a glucocorticoid receptor antagonist, RU486, were administered to adult rats prior to hemorrhage. In the liver, the defects of insulin signaling after hemorrhage, including reduced tyrosine phosphorylation of the insulin receptor and IRS-1, association between IRS-1 and phosphatidylinositol 3-kinase and serine phosphorylation of Akt in response to insulin were not altered by pretreatment of rats with metyrapone or RU486. In contrast, hemorrhage-induced defects in insulin signaling were dramatically reversed in skeletal muscle, indicating a prevention of insulin resistance in muscle. These results suggest that distinct mechanisms for hemorrhage-induced acute insulin resistance are present in these two tissues and that glucocorticoids are involved in the rapid development of insulin resistance in skeletal muscle, but not in the liver, after hemorrhage. Glucocorticoids play a major role in the development of acute insulin resistance following hemorrhage in skeletal muscle, but not in the liver.



2010 ◽  
Vol 69 (2) ◽  
pp. 232-243 ◽  
Author(s):  
Elizabeth Oliver ◽  
Fiona McGillicuddy ◽  
Catherine Phillips ◽  
Sinead Toomey ◽  
Helen M. Roche

The WHO estimate that >1×106deaths in Europe annually can be attributed to diseases related to excess body weight, and with the rising global obesity levels this death rate is set to drastically increase. Obesity plays a central role in the metabolic syndrome, a state of insulin resistance that predisposes patients to the development of CVD and type 2 diabetes mellitus. Obesity is associated with low-grade chronic inflammation characterised by inflamed adipose tissue with increased macrophage infiltration. This inflammation is now widely believed to be the key link between obesity and development of insulin resistance. In recent years it has been established that activation of pro-inflammatory pathways can cross talk with insulin signalling pathways via a number of mechanisms including (a) down-regulation of insulin signalling pathway proteins (e.g. GLUT4 and insulin receptor substrate (IRS)-1), (b) serine phosphorylation of IRS-1 blocking its tyrosine phosphorylation in response to insulin and (c) induction of cytokine signalling molecules that sterically hinder insulin signalling by blocking coupling of the insulin receptor to IRS-1. Long-chain (LC)n-3 PUFA regulate gene expression (a) through transcription factors such as PPAR and NF-κB and (b) via eicosanoid production, reducing pro-inflammatory cytokine production from many different cells including the macrophage. LCn-3 PUFA may therefore offer a useful anti-inflammatory strategy to decrease obesity-induced insulin resistance, which will be examined in the present review.



2003 ◽  
Vol 31 (6) ◽  
pp. 1152-1156 ◽  
Author(s):  
Y. Le Marchand-Brustel ◽  
P. Gual ◽  
T. Grémeaux ◽  
T. Gonzalez ◽  
R. Barrès ◽  
...  

Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterized by a decrease in the insulin effect on glucose transport in muscle and adipose tissue. Tyrosine phosphorylation of IRS-1 (insulin receptor substrate 1) and its binding to PI 3-kinase (phosphoinositide 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Various studies have implicated lipids as a cause of insulin resistance in muscle. Elevated plasma fatty acid concentrations are associated with reduced insulin-stimulated glucose transport activity as a consequence of altered insulin signalling through PI 3-kinase. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine phosphorylation, PI 3-kinase activity and glucose transport. Recent findings demonstrate that non-esterified fatty acids, as well as other factors such as tumour necrosis factor α, hyperinsulinaemia and cellular stress, increase the serine phosphorylation of IRS-1 and identified Ser307 as one of the phosphorylated sites. Moreover, several kinases able to phosphorylate this serine residue have been identified. These exciting results suggest that Ser307 phosphorylation is a possible hallmark of insulin resistance in biologically insulin-responsive cells or tissues. Identification of IRS-1 kinases could enable rational drug design in order to selectively inhibit the activity of the relevant enzymes and generate a novel class of therapeutic agents for type 2 diabetes.



2001 ◽  
Vol 281 (5) ◽  
pp. E1022-E1028 ◽  
Author(s):  
Dana S. Hardin ◽  
Adrian Leblanc ◽  
Gailen Marshall ◽  
Dan K. Seilheimer

Cystic fibrosis (CF) is associated with a high incidence of diabetes. Studies evaluating causes of CF-related diabetes (CFRD) have consistently documented decreased insulin secretion. In patients with CFRD, insulin sensitivity has been documented to be decreased, but controversy exists in patients with normal or impaired glucose tolerance (IGT). We undertook this study 1) to reexplore insulin sensitivity in patients with IGT and 2) to evaluate potential mechanisms of insulin resistance in CF, including GLUT-4 translocation, elevation of serum cytokines, and free fatty acid (FFA) levels. We recruited nine CF subjects with impaired glucose tolerance (IGTCF) and nine age-, gender-, and body mass index-matched control volunteers. Each underwent a hyperinsulinemic euglycemic clamp (200 mU · m−2 · min−1) to measure insulin sensitivity. A muscle biopsy was obtained at maximal insulin stimulation for measure of GLUT-4 translocation with sucrose gradients. An oral glucose tolerance test and National Institutes of Health (NIH) clinical status scores were measured in all volunteers. We also measured tumor necrosis factor (TNF)-α levels and FFA in all subjects. Additionally, we report the results of TNF-α and FFA in 32 CF patients previously studied by our group. Results were that glucose disposal rate (GDR) was significantly lower in the CFIGT subjects than in controls, indicative of impaired insulin action. GLUT-4 translocation was impaired in CF and correlated with GDR. TNF-α levels were higher in all CF subjects than in controls and correlated with GDR. There was no difference in FFA between CF and control subjects. Modified NIH clinical status scores were inversely correlated with GDR and TNF-α levels. We conclude that IGTCF patients have decreased peripheral insulin sensitivity. Mechanisms include elevation of TNF-α and impaired translocation of GLUT-4.



Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6310
Author(s):  
Yang Gou ◽  
Bingyang Liu ◽  
Mengyao Cheng ◽  
Takako Yamada ◽  
Tetsuo Iida ◽  
...  

Background: d-Allulose is a rare sugar with antiobesity and antidiabetic activities. However, its direct effect on insulin sensitivity and the underlying mechanism involved are unknown. Objective: This study aimed to investigate the effect of d-allulose on high-fat diet (HFD)-induced insulin resistance using the hyperinsulinemic–euglycemic (HE)-clamp method and intramuscular signaling analysis. Methods: Wistar rats were randomly divided into three dietary groups: chow diet, HFD with 5% cellulose (HFC), and HFD with 5% d-allulose (HFA). After four weeks of feeding, the insulin tolerance test (ITT), intraperitoneal glucose tolerance test (IPGTT), and HE-clamp study were performed. The levels of plasma leptin, adiponectin, and tumor necrosis factor (TNF)-α were measured using the enzyme-linked immunosorbent assay. We analyzed the levels of cell signaling pathway components in the skeletal muscle using Western blotting. Results: d-allulose alleviated the increase in HFD-induced body weight and visceral fat and reduced the area under the curve as per ITT and IPGTT. d-Allulose increased the glucose infusion rate in the two-step HE-clamp test. Consistently, the insulin-induced phosphorylation of serine 307 in the insulin receptor substrate-1 and Akt and expression of glucose transporter 4 (Glut-4) in the muscle were higher in the HFA group than HFC group. Furthermore, d-allulose decreased plasma TNF-α concentration and insulin-induced phosphorylation of stress-activated protein kinase/Jun N-terminal kinase in the muscle and inhibited adiponectin secretion in HFD-fed rats. Conclusions: d-allulose improved HFD-induced insulin resistance in Wistar rats. The reduction of the proinflammatory cytokine production, amelioration of adiponectin secretion, and increase in insulin signaling and Glut-4 expression in the muscle contributed to this effect.



2004 ◽  
Vol 63 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Matthew W. Hulver ◽  
G. Lynis Dohm

Skeletal muscle insulin resistance is a co-morbidity of obesity and a risk factor for the development of type 2 diabetes mellitus. Insulin resistance is associated with the accumulation of intramyocellular lipids. Intramyocellular triacylglycerols do not appear to be the cause of insulin resistance but are more likely to be a marker of other lipid intermediates such as fatty acyl-CoA, ceramides or diacylglycerols. Fatty acyl-CoA, ceramides and diacylglycerols are known to directly alter various aspects of the insulin signalling cascade. Insulin signalling is inhibited by the phosphorylation of serine and threonine residues at the levels of the insulin receptor and insulin receptor substrate 1. Protein kinase C is responsible for the phosphorylation of the serine and threonine residues. Fatty acyl-CoA and diacylglycerols are known to activate protein kinase C. The cause of the intramyocellular accumulation of fatty acyl-CoA and diacylglycerols is unclear at this time. Reduced fatty acid oxidation does not appear to be responsible, as fatty acyl-CoA accumulates in skeletal muscle with a normal fatty acid oxidative capacity. Other potential mechanisms include oversupply of lipids to muscle and/or up regulated fatty acid transport.



Sign in / Sign up

Export Citation Format

Share Document