Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores

2006 ◽  
Vol 34 (1) ◽  
pp. 152-155 ◽  
Author(s):  
M.-J. Huertas ◽  
V.M. Luque-Almagro ◽  
M. Martínez-Luque ◽  
R. Blasco ◽  
C. Moreno-Vivián ◽  
...  

Cyanide is one of the most potent and toxic chemicals produced by industry. The jewellery industry of Córdoba (Spain) generates a wastewater (residue) that contains free cyanide, as well as large amounts of cyano–metal complexes. Cyanide is highly toxic to living systems because it forms very stable complexes with transition metals that are essential for protein function. In spite of its extreme toxicity, some organisms have acquired mechanisms to avoid cyanide poisoning. The biological assimilation of cyanide needs the concurrence of three separate processes: (i) a cyanide-insensitive respiratory chain, (ii) a system for iron acquisition (siderophores) and (iii) a cyanide assimilation pathway. Siderophores are low-molecular-mass compounds (600–1500 Da) that scavenge iron (Fe3+) ions (usually with extremely high affinity) from the environment under iron-limiting conditions. There are two main classes of siderophores: catechol and hydroxamate types. The catechol-type siderophores chelate ferric ion via a hydroxy group, whereas the hydroxamate-type siderophores bind iron via a carbonyl group with the adjacent nitrogen. In the presence of cyanide, bacterial proliferation requires this specific metal uptake system because siderophores are able to break down cyano–metal complexes. Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide or cyano–metal complexes as nitrogen source. A proteomic approach was used for the isolation and identification, in this strain, of a protein that was induced in the presence of cyanide, namely CN0, that is involved in siderophore biosynthesis in response to cyanide. An overview of bacterial cyanide degradation pathways and the involvement of siderophores in this process are presented.

2005 ◽  
Vol 33 (1) ◽  
pp. 168-169 ◽  
Author(s):  
V.M. Luque-Almagro ◽  
R. Blasco ◽  
M.J. Huertas ◽  
M. Martínez-Luque ◽  
C. Moreno-Vivián ◽  
...  

Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, β-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pKa 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewellery industry, and is also a cyanide-resistant strain which induces an alternative oxidase and a siderophore-based mechanism for iron acquisition in the presence of cyanide. The detection of cyanase and β-cyanoalanine nitrilase activities in cyanide-induced cells suggests their implication in the cyanide degradation pathway.


2010 ◽  
Vol 54 (4) ◽  
pp. 1580-1589 ◽  
Author(s):  
Marcus Miethke ◽  
Arne Skerra

ABSTRACT l-norepinephrine (NE) is a neuroendocrine catecholamine that supports bacterial growth by mobilizing iron from a primary source such as holotransferrin to increase its bioavailability for cellular uptake. Iron complexes of NE resemble those of bacterial siderophores that are scavenged by human neutrophil gelatinase-associated lipocalin (NGAL) as part of the innate immune defense. Here, we show that NGAL binds iron-complexed NE, indicating physiological relevance for both bacterial and human iron metabolism. The fluorescence titration of purified recombinant NGAL with the FeIII·(NE)3 iron complex revealed high affinity for this ligand, with a K D of 50.6 nM. In contrast, the binding protein FeuA of Bacillus subtilis, which is involved in the bacterial uptake of triscatecholate iron complexes, has a K D for FeIII·(NE)3 of 1.6 μM, indicating that NGAL is an efficient competitor. Furthermore, NGAL was shown to inhibit the NE-mediated growth of both E. coli and B. subtilis strains that either are capable or incapable of producing their native siderophores enterobactin and bacillibactin, respectively. These experiments suggest that iron-complexed NE directly serves as an iron source for bacterial uptake systems, and that NGAL can function as an antagonist of this iron acquisition process. Interestingly, a functional FeuABC uptake system was shown to be necessary for NE-mediated growth stimulation as well as its NGAL-dependent inhibition. This study demonstrates for the first time that human NGAL not only neutralizes pathogen-derived virulence factors but also can effectively scavenge an iron-chelate complex abundant in the host.


1995 ◽  
Vol 41 (1) ◽  
pp. 70-74 ◽  
Author(s):  
N. Charland ◽  
C. G. D'silva ◽  
R. A. Dumont ◽  
D. F. Niven

Two strains of Haemophilus parasuis, namely, the type strain (ATCC 19417) and strain E751, were investigated with respect to iron acquisition. Both strains produced iron-repressible outer membrane proteins and could acquire iron from porcine transferrin but not from porcine lactoferrin. Neither strain used bovine transferrin, and human transferrin was used to only a very limited extent, if at all. In all cases, iron acquisition from transferrin required direct contact between the organisms and the protein. An affinity isolation technique based on biotinylated porcine transferrin plus streptavidin-agarose, followed by SDS-PAGE, allowed the isolation and identification of two potential porcine transferrin binding polypeptides (94 and 60 kDa) from total membranes derived from the type strain grown under iron-restricted conditions but only one (96 kDa) from strain E751. Each of these polypeptides was iron repressible and was not isolated when biotinylated human or bovine transferrin was used instead of biotinylated porcine transferrin. It is concluded that both strains acquire transferrin-bound iron by means of siderophore-independent mechanisms and that the isolated polypeptides represent porcine transferrin receptor components.Key words: Haemophilus parasuis, iron, transferrin, receptors.


2021 ◽  
Author(s):  
Arwen E Frick-Cheng ◽  
Anna Sintsova ◽  
Sara N Smith ◽  
Ali Pirani ◽  
Evan S Snitkin ◽  
...  

More than half of women will experience a urinary tract infection (UTI) with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC encode functionally redundant iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7 lacks this functional redundancy and instead encodes a sole siderophore, enterobactin. To determine if E. coli HM7 possesses unidentified iron acquisition systems, we performed RNA-sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is highly enriched in UPEC isolates compared to environmental or fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔentB/ΔfecA) abrogates use of ferric citrate as an iron source and fecA provides an advantage in human urine in absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host Lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Ilesanmi Festus Fadahunsi ◽  
Nafisat Kemi Busari ◽  
Olumide Samuel Fadahunsi

Abstract Background This study was designed to investigate the effect of cultural conditions on growth and production of linamarase by a local species of Lactobacillus fermentum isolated from cassava effluent. Isolation and identification of bacteria from cassava effluent were carried out using the culture-dependent method and polyphasic taxonomy, respectively, while screening for cyanide degradation, and the effects of cultural conditions on the growth and linamarase activity of L. fermentum were investigated based on standard procedures. Results A total of twenty-one bacterial isolates were obtained from cassava effluent, and isolate MA 9 had the highest growth of 2.8 × 1010 cfu/ml in minimum medium, confirmed as safe, identified as Lactobacillus fermentum and selected for further study. The highest growth of 2.498 OD and linamarase activity of 2.49 U/ml were observed at inoculums volume of 0.10 ml at 48-h incubation period, while optimum growth of 1.926 OD and linamarase activity of 1.66 U/ml occurred at pH 5.5. At 37 °C, the optimum growth of 0.34 OD was recorded with the highest linamarase activity of 0.81 U/ml at 30 °C. However, the incubation period of 48 h stimulated an optimum growth of 3.091 OD with corresponding linamarase activity of 1.81 U/ml, while the substrate concentration of 400 ppm favours a maximum growth of 2.783 OD with linamarase activity of 1.86 U/ml at 48 h of incubation. The supplemented of 10 mM calcium ions stimulated optimum linamarase activity of 2.65 U/ml. Conclusion Lactobacillus fermentum could be used as starter culture in cassava fermentation for the production cassava-based product with reduced cyanide content.


2015 ◽  
Vol 198 (5) ◽  
pp. 857-866 ◽  
Author(s):  
Joyce Wang ◽  
Jalal Moolji ◽  
Alex Dufort ◽  
Alfredo Staffa ◽  
Pilar Domenech ◽  
...  

ABSTRACTMycobacterium aviumsubsp.paratuberculosisis a host-adapted pathogen that evolved from the environmental bacteriumM. aviumsubsp.hominissuisthrough gene loss and gene acquisition. Growth ofM. aviumsubsp.paratuberculosisin the laboratory is enhanced by supplementation of the media with the iron-binding siderophore mycobactin J. Here we examined the production of mycobactins by related organisms and searched for an alternative iron uptake system inM. aviumsubsp.paratuberculosis. Through thin-layer chromatography and radiolabeled iron-uptake studies, we showed thatM. aviumsubsp.paratuberculosisis impaired for both mycobactin synthesis and iron acquisition. Consistent with these observations, we identified several mutations, including deletions, inM. aviumsubsp.paratuberculosisgenes coding for mycobactin synthesis. Using a transposon-mediated mutagenesis screen conditional on growth without myobactin, we identified a potential mycobactin-independent iron uptake system on aM. aviumsubsp.paratuberculosis-specific genomic island, LSPP15. We obtained a transposon (Tn) mutant with a disruption in the LSPP15 geneMAP3776cfor targeted study. The mutant manifests increased iron uptake as well as intracellular iron content, with genes downstream of the transposon insertion (MAP3775ctoMAP3772c[MAP3775-2c]) upregulated as the result of a polar effect. As an independent confirmation, we observed the same iron uptake phenotypes by overexpressingMAP3775-2cin wild-typeM. aviumsubsp.paratuberculosis. These data indicate that the horizontally acquired LSPP15 genes contribute to iron acquisition byM. aviumsubsp.paratuberculosis, potentially allowing the subsequent loss of siderophore production by this pathogen.IMPORTANCEMany microbes are able to scavenge iron from their surroundings by producing iron-chelating siderophores. One exception isMycobacterium aviumsubsp.paratuberculosis, a fastidious, slow-growing animal pathogen whose growth needs to be supported by exogenous mycobacterial siderophore (mycobactin) in the laboratory. Data presented here demonstrate that, compared to other closely relatedM. aviumsubspecies, mycobactin production and iron uptake are different inM. aviumsubsp.paratuberculosis, and these phenotypes may be caused by numerous deletions in its mycobactin biosynthesis pathway. Using a genomic approach, supplemented by targeted genetic and biochemical studies, we identified that LSPP15, a horizontally acquired genomic island, may encode an alternative iron uptake system. These findings shed light on the potential physiological consequence of horizontal gene transfer inM. aviumsubsp.paratuberculosisevolution.


2002 ◽  
Vol 30 (4) ◽  
pp. 705-707 ◽  
Author(s):  
R. W. Evans ◽  
J. S. Oakhill

The pathogenic Neisseria have a siderophore-independent iron-uptake system reliant on a direct interaction between the bacterial cell and transferrin. In the meningococcus this uptake system is dependent on two surface-exposed transferrin-binding proteins. This short account will review our current knowledge of the transferrin-mediated iron-acquisition system of pathogenic Neisseria.


2011 ◽  
Vol 39 (1) ◽  
pp. 269-274 ◽  
Author(s):  
Victor M. Luque-Almagro ◽  
Rafael Blasco ◽  
Manuel Martínez-Luque ◽  
Conrado Moreno-Vivián ◽  
Francisco Castillo ◽  
...  

There are thousands of areas in the U.S.A. and Europe contaminated with cyanide-containing wastes as a consequence of a large number of industrial activities such as gold mining, steel and aluminium manufacturing, electroplating and nitrile pesticides used in agriculture. Chemical treatments to remove cyanide are expensive and generate other toxic products. By contrast, cyanide biodegradation constitutes an appropriate alternative treatment. In the present review we provide an overview of how cells deal in the presence of the poison cyanide that irreversible binds to metals causing, among other things, iron-deprivation conditions outside the cell and metalloenzymes inhibition inside the cell. In this sense, several systems must be present in a cyanotrophic organism, including a siderophore-based acquisition mechanism, a cyanide-insensitive respiratory system and a cyanide degradation/assimilation pathway. The alkaliphilic autochthonous bacterium Pseudomonas pseudocaligenes CECT5344 presents all these requirements with the production of siderophores, a cyanide-insensitive bd-related cytochrome [Cio (cyanide-insensitive oxidase)] and a cyanide assimilation pathway that generates ammonium, which is further incorporated into organic nitrogen.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jernej Turnšek ◽  
John K Brunson ◽  
Maria del Pilar Martinez Viedma ◽  
Thomas J Deerinck ◽  
Aleš Horák ◽  
...  

Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Antonio Junior Lepedda ◽  
Angelo Zinellu ◽  
Gabriele Nieddu ◽  
Elisabetta Zinellu ◽  
Ciriaco Carru ◽  
...  

Objectives. Oxidative stress has been implicated in the outcome of atherosclerotic plaques. However, at present, no data are available neither on the degree of plaque protein sulfhydryl groups oxidation nor on its relationship with plaque vulnerability. We investigated the entity of protein-SH oxidative modifications, focusing on low molecular weight thiols adduction, in human carotid plaque extracts in relation to plaque stability/instability.Methods. Plaque stability/instability was histologically assessed. The extent of protein-SH oxidative modifications was established by a differential proteomic approach on fluorescein-5-maleimide-labeled plaque extracts and corresponding plasma samples from 48 endarterectomized patients. The analysis on protein thiolation was performed by capillary zone electrophoresis.Results. We observed a higher protein-SH oxidation of both plasma-derived and topically expressed proteins in unstable plaques, partly due to higher levels of S-thiolation. Conversely, in plasma, none of the investigated parameters discriminated among patients with stable and unstable plaques.Conclusions. Our results suggest the presence of a more pronounced oxidative environment in unstable plaques. Identifying specific oxidative modifications and understanding their effects on protein function could provide further insight into the relevance of oxidative stress in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document