G-protein-coupled receptor signalling through protein networks

2007 ◽  
Vol 35 (1) ◽  
pp. 23-27 ◽  
Author(s):  
A.D. Strosberg ◽  
C. Nahmias

This short review provides a broad, and therefore necessarily incomplete and personal, overview of G-protein-coupled receptors, which are often targets for a wide range of important drugs: I will discuss successively their structure, function and interactions with associated proteins. Examples will be drawn from work done over the last 30 years by scientists that worked at different times in my laboratories, mainly in the field of β-adrenoceptors, muscarinic acetylcholine, melatonin and angiotensin receptors.

2020 ◽  
Vol 3 (4) ◽  
pp. 257-264
Author(s):  
Catherine J Hutchings

Abstract Antibodies are now well established as therapeutics with many additional advantages over small molecules and peptides relative to their selectivity, bioavailability, half-life and effector function. Major classes of membrane-associated protein targets include G protein-coupled receptors (GPCRs) and ion channels that are linked to a wide range of disease indications across all therapeutic areas. This mini-review summarizes the antibody target landscape for both GPCRs and ion channels as well as current progress in the respective research and development pipelines with some example case studies highlighted from clinical studies, including those being evaluated for the treatment of symptoms in COVID-19 infection.


2004 ◽  
Vol 70 (5) ◽  
pp. 2880-2885 ◽  
Author(s):  
Tomoko Yoshino ◽  
Masayoshi Takahashi ◽  
Haruko Takeyama ◽  
Yoshiko Okamura ◽  
Fukuichi Kato ◽  
...  

ABSTRACT G protein-coupled receptors (GPCRs) play a central role in a wide range of biological processes and are prime targets for drug discovery. GPCRs have large hydrophobic domains, and therefore purification of GPCRs from cells is frequently time-consuming and typically results in loss of native conformation. In this work, GPCRs have been successfully assembled into the lipid membrane of nanosized bacterial magnetic particles (BMPs) produced by the magnetic bacterium Magnetospirillum magneticum AMB-1. A BMP-specific protein, Mms16, was used as an anchor molecule, and localization of heterologous Mms16 on BMPs was confirmed by luciferase fusion studies. Stable luminescence was obtained from BMPs bearing Mms16 fused with luciferase at the C-terminal region. D1 dopamine receptor (D1R), a GPCR, was also efficiently assembled onto BMPs by using Mms16 as an anchor molecule. D1R-BMP complexes were simply extracted by magnetic separation from ruptured AMB-1 transformants. After washing, the complexes were ready to use for analysis. This system conveniently refines the native conformation of GPCRs without the need for detergent solubilization, purification, and reconstitution after cell disruption.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Hui Guo ◽  
Su An ◽  
Richard Ward ◽  
Yang Yang ◽  
Ying Liu ◽  
...  

G-protein-coupled receptors (GPCRs), which constitute the largest family of cell surface receptors, were originally thought to function as monomers, but are now recognized as being able to act in a wide range of oligomeric states and indeed, it is known that the oligomerization state of a GPCR can modulate its pharmacology and function. A number of experimental techniques have been devised to study GPCR oligomerization including those based upon traditional biochemistry such as blue-native PAGE (BN-PAGE), co-immunoprecipitation (Co-IP) and protein-fragment complementation assays (PCAs), those based upon resonance energy transfer, FRET, time-resolved FRET (TR-FRET), FRET spectrometry and bioluminescence resonance energy transfer (BRET). Those based upon microscopy such as FRAP, total internal reflection fluorescence microscopy (TIRFM), spatial intensity distribution analysis (SpIDA) and various single molecule imaging techniques. Finally with the solution of a growing number of crystal structures, X-ray crystallography must be acknowledged as an important source of discovery in this field. A different, but in many ways complementary approach to the use of more traditional experimental techniques, are those involving computational methods that possess obvious merit in the study of the dynamics of oligomer formation and function. Here, we summarize the latest developments that have been made in the methods used to study GPCR oligomerization and give an overview of their application.


2021 ◽  
Author(s):  
Shanta J. Persaud ◽  
Oladapo E. Olaniru ◽  
Patricio Atanes

The majority of people with diabetes have type 2 diabetes (T2D), where hyperglycaemia occurs because the islet β-cells are unable to secrete enough insulin, usually in the context of insulin resistance that arises because of fat mass expansion. There are a range of pharmacotherapies in current use to treat T2D and pharmaceutical companies are actively engaged in the development of novel therapies for better glucose control. Ligands that target G-protein-coupled receptors (GPCRs) are obvious candidates because they are used successfully for a wide range of disorders and GLP-1 receptor agonists, which are a relatively recent class of diabetes therapy, have proved to be very effective in treating T2D. We provide here an overview of current successes, some drawbacks and future possibilities for GPCR-based T2D therapies.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Tao Zhang ◽  
Kangyun Dong ◽  
Wei Liang ◽  
Daichao Xu ◽  
Hongguang Xia ◽  
...  

Autophagy is an important intracellular catabolic mechanism involved in the removal of misfolded proteins. Atg14L, the mammalian ortholog of Atg14 in yeast and a critical regulator of autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. However, it is not clear how Atg14L is regulated. In this study, we demonstrate that ubiquitination and degradation of Atg14L is controlled by ZBTB16-Cullin3-Roc1 E3 ubiquitin ligase complex. Furthermore, we show that a wide range of G-protein-coupled receptor (GPCR) ligands and agonists regulate the levels of Atg14L through ZBTB16. In addition, we show that the activation of autophagy by pharmacological inhibition of GPCR reduces the accumulation of misfolded proteins and protects against behavior dysfunction in a mouse model of Huntington's disease. Our study demonstrates a common molecular mechanism by which the activation of GPCRs leads to the suppression of autophagy and a pharmacological strategy to activate autophagy in the CNS for the treatment of neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document